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Abstract: Humans die from age-related diseases, which are deadly manifestations of the aging process. In order to extend
life span, an anti-aging drug must delay age-related diseases. All together age-related diseases are the best biomarker of
aging. Once a drug is used for treatment of any one chronic disease, its effect against other diseases (atherosclerosis,
cancer, prostate enlargement, osteoporosis, insulin resistance, Alzheimer’s and Parkinson’s diseases, age-related macular
degeneration) may be evaluated in the same group of patients. If the group is large, then the anti-aging effect could be
validated in a couple of years. Startlingly, retrospective analysis of clinical and preclinical data reveals four potential anti-
aging modalities.

Problem Second, we must find a biomarker of aging that
absolutely predicts longevity. Then using this
The discovery of anti-aging drugs is no longer a fantasy. biomarker, the anti-aging effect could be evaluated in
Numerous genes for aging and longevity have been the same patients.
identified in diverse organisms, revealing potential
targets for potential anti-aging drugs. But how could Aging and age-related diseases
potential anti-aging drug be introduced to humans? There
are two problems. First, the effect of anti-aging agents on Aging can be defined as an increase in the probability of
human aging may require almost a lifetime to determine death. This is how the rate of aging can be measured.
[1]. Second, it is seemingly desirable to test anti-aging Humans die not from ‘healthy’ aging but from age-
drugs in healthy individuals. However, all drugs have related diseases. Healthy aging (a late onset of disease)
side effects. And, in healthy individuals, side effects is associated with longevity. For example, centenarians
would preclude clinical trials. How might these problems show significant delay in the onset of age-related
be solved? How could we validate anti-aging drugs in diseases, including cardiovascular disease, type 2
humans without life-long trials in healthy individuals? diabetes, cancer and Alzheimer’s disease. In other
) words, those who live longer are healthier and vice
Solution versa [4, 5]. Since, by definition, all age-dependent
diseases are connected with aging, these diseases are
The solution includes two steps. First, we must find an connected to each other. In fact, aging humans often
indication for a drug to treat at least one chronic suffer from many diseases simultaneously: diabetes,
disease. Then this drug could be tested in humans, not atherosclerosis, hypertension, macular degeneration,
as an anti-aging drug, but as therapy for a particular prostate enlargement and prostate cancer (in men) or
disease. In fact this approach has been suggested for breast cancer (in women), Alzheimer’s disease and
introduction of activators of sirtuins to the clinic [2, 3]. osteoarthritis. This is why elimination of one disease
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(e.g., cancer) will not radically extend maximal human
lifespan. And as calculated, “the complete resolution of
Alzheimer’s disease would add about 19 days onto
average life expectancy” [6]. But if a drug delays or
stops all diseases, a person must live longer. Otherwise
what would be the cause of death, if all causes were
delayed? Since human longevity is limited by death
from age-related diseases, a true anti-aging drug must
delay age-related diseases. In other words, unless a drug
delays age-related diseases, it will not extend lifespan.
And vice versa, if a drug prevents age-related diseases,
it must extend life span.

Biomarker of organismal aging

Given that (a) an increase in the death rate is a measure
of aging and (b) the death rate is determined diseases
taken together, then we can conclude that the sum of all
age-related diseases is the best biomarker of aging. Any
one age-related disease is not a biomarker of aging
because, in addition to aging, numerous factors
contribute to the incidence of a particular disease. For
example, smoking increases the risk for lung cancer but
not for Parkinson’s disease. Yet, aging is a risk factor
for both diseases. And, even for lung cancer, aging is a
bigger risk factor than is smoking. Aging is the biggest
risk factor for all age-related diseases. Whether aging
and disease have a common mechanism or whether
aging simply increases vulnerability to diseases, in any
case, the inhibition of aging will delay diseases, thus
extending life span.

Disease-specific drugs versus anti-aging agents

Slowing aging would delay all age-related diseases. If a
drug is effective against one particular disease only,
such a drug is not anti-aging. And current drugs are not
anti-aging. For example, insulin compensates diabetes.
Yet, insulin does not treat cancer. And vice versa
chemotherapy may treat cancer but does not treat
diabetes. So neither chemotherapy nor insulin is an anti-
aging modality. Furthermore, both insulin and
chemotherapy may accelerate aging.

Metformin

The underlying cause of age-related type Il diabetes is
insulin resistance. Insulin treatment does not ‘treat’ the
cause, it just compensates for resistance. Unlike insulin,
metformin, an oral anti-diabetic drug, restores insulin
sensitivity in type diabetes type Il. Remarkably,
metformin decreases the incidence of breast cancer [7,
8]. Also, metformin is considered for cancer treatment
[9] and inhibits atherosclerosis in diabetic mice [10].
Metformin is used to induce ovulation in patients with

polycystic ovary syndrome (PCOS). Six months of 1700
mg/d metformin treatment improved fertility in
anovulatory PCOS women [11, 12]. Given such effects
on infertility, type Il diabetes, cancer and
atherosclerosis, it is plausible that metformin slows
aging. In fact, it extends life span in rodents [13-15].

Calorie restriction

Calorie restriction (CR) extends life span from yeast
and worms to rodents and perhaps humans [16-18]. If
we did not already know that CR slows aging, how
might we figure that out based solely on clinical data?
Unrestricted food consumption leads to obesity
associated with diabetes, atherosclerosis, thrombosis,
hypertension, cancer (especially breast, prostate and
colon cancer), coronary heart disease, stroke,
osteoporosis and Alzheimer’s disease [19-25]. In other
words, unrestricted eating in humans (ad libitum in
rodents) accelerates most, if not all, diseases of aging.
So we can conclude that CR delays all diseases of
aging. This suggests that CR is an anti-aging modality.
And it is known that CR extends life span in almost all
organisms from yeast to mammals.

From metformin and calorie restriction to rapamycin

Numerous factors including insulin, glucose and amino
acids activate the nutrient-sensing TOR (target of
rapamycin) pathway. When the TOR pathway is
activated, it acts via S6K to deplete the insulin-receptor-
substrate (IRS1/2), causing insulin resistance (Figure 1).
As shown in Figure 1, metformin indirectly (by
activating AMPK) inhibits TOR and thereby restores
insulin sensitivity [26].

CR decreases levels of nutrients and insulin and thus
de-activates TOR (Figure 1). It is possible that the anti-
aging effects of CR and metformin are due to inhibition
of the TOR pathway. Like CR, rapamycin decreases
size of fat cells and animal weight. When rats (15 weeks
old) were either treated 1 mg/kg rapamycin 3 times per
week for 12 weeks, rapamycin decreased their weight.
Mean adipocyte diameter was decreased from 36 pum to
25 um. At the end of the study, mean body weight in the
rapamycin-treated rats was 356 g instead of 507 g, in
spite of comparable food intake [27]. So rapamycin
imitated CR. CR may also extend life span by activating
sirtuins. Probably, sirtuins, AMPK and mTOR are
linked in the common network [28].

Genetic inhibition of the TOR pathway slows down
aging in diverse organisms, including yeast, worms,
flies and mice [29-33]. If genetic inhibition of the
TOR pathway slows aging, then rapamycin, a drug that
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Figure 1. The TOR intracellular signaling pathway. Nutrients, GF (growth factors) and insulin activate the TOR pathway, which is
involved in aging and age-related diseases. Other genetic factors and environmental factors (e.g., smoking) contribute to specific age-
related diseases. Three potential anti-aging modalities (metformin, calorie restriction and rapamycin) all inhibit the TOR pathway.

inhibits TOR, must slow aging too. Once used for any
indication, even unrelated to age-related diseases (such
as renal transplantation, for instance), an anti-aging
drug should slow down age-related diseases such as
cancer, osteoporosis and atherosclerosis. Rapamycin is
already used in renal transplant patients.

Retrospective analysis of the clinical use of rapamycin

Rapamycin has been used in renal-transplant patients
for several years. Since rapamycin was viewed as an
immunossupressive drug (not as an anti-aging drug) it
was expected that it would cause cancer.

Unexpectedly, it turned out that rapamycin prevented
cancer, and even cured pre-existing cancer and Kaposi’s
sarcoma in renal transplant patients [34-44].
Furthermore, temsirolimus, an analog of rapamycin, has
recently been approved for cancer therapy [45]. Also,
everolimus, a TOR inhibitor, markedly delayed tumor
development in transgenic mice that spontaneously
develop ovarian carcinomas [46]. Would TOR
inhibitors extend life span in transgenic mice? Since
rapamycin delays cancer, it must prolong the life span
of cancer-prone mice, who would otherwise die from
cancer. Of course, humans die from a variety of age-
related diseases, not from just one disease. To prolong

life span dramatically, rapamycin must delay most of
them.

In renal transplant patients, rapamycin increases blood
lipoproteins [47]. This is considered to be a negative
side effect. Yet, this results from mobilization of fat
from the fat tissue (lipolysis) [48, 49]. This is exactly
what happens during starvation or calorie restriction
(CR). And CR extends life span. Furthermore,
rapamycin reduces the accumulation of cholesterol
within the arterial wall [50, 51]. Thus, lipolysis of fat
tissue and decreased uptake of cholesterol by tissues
both contribute to high levels of lipids in blood (Figure
2). Despite hypercholesterolemia, rapamycin prevents
atherosclerosis in animals [52]. In animal models,
systemic administration of rapamycin  reduces
neointimal thickening and slows the progression of
atherosclerosis in apoE-deficient mice with elevated
levels of cholesterol [53-55]. In patients with coronary
atherosclerosis, oral rapamycin prevents re-stenosis
after implantation of metal stents [56]. As a case report,
it has been described that conversion to everolimus (an
analog of rapamycin) resulted in decrease in blood
pressure [57]. In kidney transplant patients, 2 years after
transplantation, body-mass index was significantly
lower in the rapamycin-based treatment arm compared
to cyclosporine [27].
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Figure 2. Re-interpretation of the hyperlipidemic side
effect of rapamycin. Rapamycin activates adipose tissue lipase,
thus mobilizing lipids from the fat tissue (lipolysis). This effect
imitates starvation. Also, rapamycin inhibits lipoprotein lipase thus
preventing utilization of lipids by the fat tissue and blocking lipid
uptake by the arterial wall. This results in increase in blood lipids.

Multiple indications for a single drug

If a drug is indicated to treat most age-related diseases,
then this drug could be defined as an anti-aging drug.
The probability that a non-anti-aging drug would have
independent activities against all diseases is exceedingly
low.

Rapamycin analogs are approved to treat certain cancers
[45]. Based on preclinical data, rapamycin has been
considered in such pathologies as obesity [58],
atherosclerosis [53-55], cardiac hypertrophy [59-64],
aortic aneurysm [65], osteoporosis [66-68], organ
fibrosis ( liver, renal, cardiac fibrosis) [64, 69, 70-75],
neurodegeneration [76, 77], Alzheimer's disease [78,
79], Parkinson’s disease [80-82], psoriasis [80], skin
scars and keloids [83], multiple sclerosis [84], arthritis
[85, 86], and renal hypertrophy in diabetes [87].

May rapamycin increase human life span?

In principle, life-extending effect of anti-aging drug
might be limited by side effects. Although chronic
administration of rapamycin is associated with some

undesirable effects in transplant patients (see for
references [88]), they might be avoided by
administrating rapamycin in pulses (for example, once a
week). For example, chronic administration of
rapamycin impairs wound healing. In theory, a pulse
treatment might rejuvenate wound-healing cells [88]. A
single dose of rapamycin reverses insulin resistance,
whereas chronic administration of rapamycin may
precipitate diabetes in certain conditions. Clinical trials
will be needed to determine benefits of pulse treatment
with rapamycin. Alternatively, rapamycin can be
combined with  ‘complementary’ drugs. Thus,
hyperlipidemia caused by rapamycin may deteriorate
insulin-resistance. Yet, hyperlipidemia caused by
rapamycin can be controlled by lipid-lowering drugs. A
combination of rapamycin with resveratrol may be
especially intriguing.

Resveratrol

Resveratrol, an activator of SIRT1 in mammals, extends
life span in diverse species. [89, 90] Resveratrol was
shown to prevent cancer, atherosclerosis, neuro-
degeneration and insulin-resistance (diabetes type II)
[10, 91-100]. Resveratrol also indirectly inhibits PI-
3K/mTOR/S6K pathway [101-105]. SIRT1 and mTOR
could be members of the same sirtuin/TOR network.
The link between TOR and sirtuins has been suggested
[28]. It is likely that TOR (pro-aging pathway) and
sirtuins (anti-aging pathway) antagonize each other
[106]. However, inhibition of the TOR pathway by
resveratrol occurs at near-toxic concentrations [107].

The ability of resveratrol to extend life span may be
limited by its toxicity at high doses due to off-target
effects. Therefore, more selective activators of SIRT1
undergo clinical trials [3]. Importantly, these drugs will
be developed to treat age-related diseases such as type 2
diabetes [3]. This is the only possible strategy for a drug
to enter the clinic. But here is an additional aspect: this
is the only practical way of how anti-aging effect can be
evaluated too. Once used for treatment of diabetes,
sirtuin activators might delay heart diseases, cancer,
neurodegeneration and other age-related diseases in the
same patients. And delaying of all diseases must extend
life span, thus validating a drug as anti-aging.

Conclusion

It was previously assumed that anti-aging drugs should
be tested in healthy individuals. Ironically, the best
biomarker of aging is the occurrence of age-related
diseases. And this is how anti-aging drugs can be
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validated in the clinic (by showing that a putative anti-
aging drug can prevent or delay the onset of all age-
related diseases). Then such drugs could be approved
for prevention of any particular age-related disease in
healthy individuals. Thus, potential anti-aging drugs
should be introduced to the clinical trials for therapy of
a particular disease but be ultimately approved for
prevention of all age-related diseases in healthy
individuals. And this is synonymous to the approval of a
drug as anti-aging.
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