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A role for cyclooxygenase-1 in 3-amyloid-induced neuroinflammation
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Alzheimer’s disease (AD) is a chronic neuro-
degenerative disorder characterized by progressive
cognitive decline and memory loss. Accumulation of f3-
amyloid (AB) and tau protein are believed to be
important pathological features of AD [1]. Results from
a large number of studies suggest that neuro-
inflammation is a key contributor to neuronal loss in
AD. Anti-inflammatory drugs, in particular non-
steroidal anti-inflammatory drugs (NSAIDs), seem to be
beneficial in terms of slowing the development of AD,
as shown by several epidemiological studies [2-4].
Inhibition of cyclooxygenase (COX) activity is the main
mechanism of action of NSAIDs. Two COX isoforms,
COX-1 and COX-2, have been identified. Clinical
studies evaluating the effects of NSAIDs or COX-2
selective inhibitors on AD have failed to show
therapeutic efficacy. Some authors have suggested that
the main reason for this is that COX-1 and COX-2 are
involved in AD neuropathology in a preclinical stage of
the disease. This explains the positive reports of the
epidemiological studies and the negative findings in
clinical trials with COX inhibitors [5, 6]. Long-term use
of NSAIDs might reduce the risk of AD, if the
treatment starts before the onset of AD dementia [7].

There is considerable debate on the relative contribution
of each COX isoform to AD pathology. In AD brains,

neuronal COX-2 levels have been found to be either
elevated in early stages [8-10] or decreased in end-stage
[11]. It is interesting to note that an upregulation in
early AD and reduction of COX-2 in advanced AD
correlates very nicely with the levels of prostaglandin
E, (PGE,) in the CSF, which are increased in subjects
with mild memory impairment (probable AD diagnosis)
and decreased with increasing severity of AD dementia
[12, 13] . COX-2 is expressed in neurons, but not in
astrocytes or microglia in AD brains [5]. Transgenic
mice in which human COX-2 is overexpressed
constitutively in  neurons develop age-dependent
cognitive deficits that are associated with a parallel age-
dependent increase in neuronal apoptosis and astrocytic
activation [14]. Overexpression of COX-2 in APPswe-
PS1dE9 mice leads to age-dependent cognitive deficits
in females but not male mice, without significantly
affecting AP accumulation. The cognitive deficits in
female COX-2/APPswe-PS1dE9 mice are reversed with
administration of the COX-2 selective inhibitor

celecoxib [15]. This suggests a sex-dimorphic
involvement of COX-2 in AD neuropathology.
Selective inhibition of COX-2, but not COX-1,

prevented the suppression of hippocampal long-term
potentiation (LTP) induced by ABi4.. The NSAIDs,
ibuprofen and naproxen, and a selective COX-2
inhibitor restored memory function in Tg2576 mice
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overexpressing APP [16]. Interestingly, COX-1-
expressing microglia surrounds amyloid plaques [17].
There is no evidence that COX-1 expression in
microglia is changed in AD brain [5]. However,
accumulation of COX-1-expressing microglia in AD
could result in local increase in prostaglandin synthesis
and oxidative stress.

In a very recent article by Choi and Bosetti, published
in the February issue of Aging, they report for the first
time the effect of COX-1 gene deletion on the
neurotoxicity associated with AP [18]. These data
provide strong experimental evidence linking COX-1
activity to neuronal loss following intracerebro-
ventricular administration of AP. Authors found a
dramatic inflammatory response within the CAl and
CA3 areas of the hippocampus in 3-month-old wild-
type mice seven days after AP;.4, peptide injection. This
neuroinflammatory response was characterized by the
presence of Iba-1-positive activated microglia,
increased GFAP-immunoreactive  astrocytes, and
elevated oxidative stress markers. Interestingly, COX-1
deficient mice displayed a significant reduction in the
number of activated microglia in the CA3 region of the
hippocampus as well as in the number of GFAP-
positive reactive astrocytes, indicating that APis
injection induced less severe glial activation in COX-1
knockout animals compared to wild-type control mice.
In addition, COX-1 deficiency was associated with
decreased oxidative damage, suggesting that enhanced
COX-1 activity is a significant source of oxidative
stress in AB-mediated neurotoxicity. Levels of PGE,,
PGF,, and thromboxane B, (TXB;) were significantly
reduced in COX-1 null mice compared with wild-type
controls. More importantly, COX-1 deletion resulted in
reduced neuronal damage following APBis admi-
nistration, as shown by a reduced number of Fluoro-
Jade B (FJB)-positive cells in the hippocampus.

The classical view that COX-2 is more important than
COX-1 in neuroinflammatory processes should be
revisited. The data of Choi and Bosetti [18], together
with findings from other studies [19-21] indicate that
COX-1 is actively involved in brain injury induced by
pro-inflammatory stimuli including Ap, lipopolysac-
charide (LPS) and TNF-a. In some models of
neuroinflammation, COX-2 deletion or pharmacological
inhibition with selective agents exacerbate rather than
reduce inflammation-related brain damage [22]. COX-1
is prominently expressed by microglia [8, 17]. Due to
the key role of microglia in neuroinflammation, it has
been suggested that selective inhibition of COX-1,
rather than COX-2, will be more effective in treating
neuroinflammation and neurodegeneration [23].

Reduction in cognitive decline in AD patients was
observed in a 6-month, double-blinded, placebo-
controlled study with indomethacin, a non-selective, but
a potent COX-1 inhibitor [24]. No beneficial effects
were observed with the COX-2 selective inhibitors
celecoxib and rofecoxib [25-29]. Based on these
previous studies and their own data [18], Choi and
Bosetti propose the intriguing hypothesis that the
potential protective effects of NSAIDs in AD may be
related to COX-1, but not COX-2 inhibition. In support
of this notion, a previous study showed that neurons
treated with COX-1 selective inhibitors are resistant to
AB142 [30]. Moreover, COX-1 inhibition produced a
profound inhibition of either LPS- or arachidonic acid-
induced PGE, synthesis in human microglia [31].
However, with the exception of one small pilot study
[24], no therapeutic efficacy in AD clinical trials have
been found with NSAIDs, including nonselective
inhibitors such as naproxen and diclofenac, which
inhibit both COX-1 and COX-2 [5, 26].

A major limitation of chronic COX-1 inhibitor
treatment of AD patients is the gastrointestinal toxicity,
due to the suppression of COX-1-mediated production
of protective prostaglandins. In the pilot clinical study
showing beneficial effects of indomethacin in AD
patients, the dropout rate in the indomethacin group was
approximately 40%, mostly due to drug-related
gastrointestinal adverse events [24]. There is obviously
a risk attached to taking any drug. However, clinical
demonstration of a positive benefit/risk ratio of NSAIDs
in AD patients is missing. It has been questioned
whether anti-inflammatory interventions are really a
viable or even preventive option for AD [6].

It is still debatable whether targeting neuroinflammatory
events in AD, primarily microglial activation, is a
promising therapeutic option. In AD, microglia
accumulate in senile plaques and may have a dual role,
either digesting or contributing to the formation of Af
plaques [1]. The idea of removal of senile plaque
constituents by microglia was first proposed by Timmer
in 1925, who suggested that these cells were mobilized
to phagocytose toxic products and formed the core of
senile plaques [32]. Clusters of microglial cells with
rounded and phagocytic phenotypes are found in
fibrillar AB deposits in the neocortex of AD brain [33].
In an elegant study published in Neuron, Simard and
colleagues showed that it is the bone marrow-derived
microglia, and not their counterparts resident in the
brain, that have the ability to promote the clearance and
phagocytosis of AP [34]. On the other hand, the
production of inflammatory mediators by microglia
might contribute to the formation of Ap plaques [35].
Therefore, the specific role of these cells in the
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evolution of the senile plaques in AD is still under
debate.

Early accumulation of microglial cells in AD delays
disease progression by facilitating clearance of AP
before formation of senile plaques. However, persistent
AP accumulation despite increasing microglial numbers
indicate that the capacity of microglia to phagocytose
ApB may be impaired with age. A recent study indicates
that the progression of AP plaque formation is
associated with an aging-dependent dysfunction of
microglia in the PS1-APP transgenic mice, an AD
mouse model [36]. The number of senile-like plaques
and microglia associated with these plaques are
increased as the mice age. Microglia from old PS1-APP
mice, but not from younger mice, have a decrease
capacity to clear AB. This may be related to the
increased production of proinflammatory mediators and
to a downregulation of genes involved in A removal
[36]. These results illustrate the dichotomous role of
microglia in AD pathology.

Data from the report by Choi and Bosetti [18] are
exciting and have potential clinical implications. This
study will fuel future experimentation to elucidate the
specific role of each COX isoform in neuro-
inflammation and neurodegenerative processes. It
remains to be determined how COX-1 inhibition
modifies the early beneficial function of activated
microglia in AP clearance and whether COX-1
inhibition is protective against neuronal loss in other
models of AD such as the PS1-APP transgenic mice. Is
COX-1 inhibition also protective in older animals and
females? Future research will definitely provide
answers to these questions. Elucidating the role of
neuroinflammatory events in AD may provide oppor-
tunities toward the development of new therapeutic
strategies to tackle neurodegeneration associated with
AD and possibly other neurodegenerative disorders.
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