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Abstract: Aberrant neuronal re-entry into the cell cycle is emerging as a potential pathological mechanism in Alzheimer
disease (AD). However, while cyclins, cyclin dependent kinases (CDKs), and other mitotic factors are ectopically expressed
in neurons, many of these proteins are also involved in other pathological and physiological processes, generating
continued debate on whether such markers are truly indicative of a bona fide cell cycle process. To address this issue, here
we analyzed one of the minichromosome maintenance (Mcm) proteins that plays a role in DNA replication and becomes
phosphorylated by the S-phase promoting CDKs and Cdc7 during DNA synthesis. We found phosphorylated Mcm2 (pMcm2)
markedly associated with neurofibrillary tangles, neuropil threads, and dystrophic neurites in AD but not in aged-matched
controls. These data not only provide further evidence for cell cycle aberrations in AD, but the cytoplasmic, rather than
nuclear, localization of pMcm2 suggests an abnormal cellular distribution of this important replication factor in AD that
may explain resultant cell cycle stasis and consequent neuronal degeneration.

INTRODUCTION

fibrillary tangles (NFTs), and neuronal loss are well

Alzheimer disease (AD) is a progressive and fatal established, the cause(s) of the disease remain elusive.
neurodegenerative disease that is clinically characterized Nonetheless, one mechanism that is gaining increased
by dementia and neurobehavioral deterioration [1-4]. prominence is the ectopic re-entry of neurons into the
While the hallmark features ofamylold plaques, neuro- cell Cycle [5]’ which accumulate cyclins’ CDKS, and
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other mitotic factors [6-22]. While neuronal cell cycle
re-entry mediates AD-type changes [23] and is linked
with cell death [24-27], a number of unanswered
questions remain [28]. For example, it is still unclear
whether the presence of various cell cycle markers
represent a bona fide cell cycle or are they, instead,
consequential to other pathological processes (e.g.,
apoptosis). Also, if representative of cell cycle, it is
unclear why neurons do not progress and enter
cytokinesis. One fitting hypothesis is that some cells
undergo hypermitogenic cell cycle arrest, as an
alternative to apoptosis, which would result in cell
senescence and survival [29].

The minichromosome maintenance proteins are a
eukaryotic family of six distinct protein subtypes
(Mcm2-7) that are necessary for DNA replication
initiation and progression in the cell cycle [30]. During
the G1-phase of the cell cycle, the hexameric Mcm2-7
complex assembles at origins of replication on nuclear
DNA [31]. Once in S-phase, the complex is phospho-
rylated by the Cdc7/Dbf4 kinase and the B-type CDKs,
and acting as the DNA helicase initiates DNA
replication at origins and allows progression of the
replication forks [32-37]. The assembly of the Mcm
complex is tightly regulated, can occur only in G1 when
the activity of CDKs and Cdc7 is low, and is actively
prevented once cells enter S-phase till exit of mitosis
when the activity of these kinases is high [38], such that
replication only occurs once per cell cycle. Expression
of Mcm proteins is restricted to actively cycling cells
and is a good proliferation marker [39]. While in
budding yeast Mcm2-7 proteins shuttle in and out of the
nucleus, human Mcms are generally detected in the
nuclear compartment [40, 41]. Phosphorylation can
occur at multiple sites, however phosphorylation of
Mcm?2 in two adjacent sites Ser40 and Ser4l, carried
out in succession by CDKs and Cdc7, strictly correlates
with cells undergoing or having terminated DNA
synthesis [42]. As such, antisera specific for pSer40/41
Mcm?2 phosphorylation provides an excellent marker for
the detection of cells in a late stage of the cell cycle.

In this study, we compared Ser40/41 Mcm2
phosphorylation in AD and aged-matched control brain.
In AD, phosphorylated Mcm?2 localized to the cyto-
plasm of neurons, and strikingly with the characteristic
NFT. These findings further support the notion that
neurons in AD re-enter the cell cycle, pass through S-
phase by activating the only two essential S-phase
promoting kinases, and provide evidence for aberrant
localization of an essential DNA replication protein.

RESULTS

Phosphorylated Mcm2 protein at a CDK- and Cdc7-
dependent site is localized to the cytoplasm of AD
neurons and targets neurofibrillary tangles and
amyloid plagues

The presence of pSer40/41 Mcm2 (pMcm?2) protein was
detected using the immunocytochemistry methods
discussed in the corresponding section. All of the AD
cases examined demonstrated significant accumulation
of pMcm?2 in NFTs, dystrophic neurites, and neuropil
threads (Figure 1B). In most cases, glial nuclei were
often stained, and in a small number of cases, some
pyramidal cell nuclei within the CA3 region showed
significant pMcm?2 reactivity (Figure 1D, arrows). In
similar areas in most control cases, no staining was seen
(Figure 1A), in a small number of aged control cases,
pyramidal neuron nuclei showed high pMcm2 protein
levels (Figure 1C). In some of the aged controls, a small
number of pathological structures (NFT, neuropil
threads,etc) were labeled with the pMcm?2 antisera (data
not shown).
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Figure 1. In an 87 year old AD case, hippocampal tissue sections

demonstrate significant localization of pMcm2 protein in NFT,
dystrophic neurites, and neuropil threads (B). In another AD case,
in the CA3 region, in addition to pathological structures, a few
pyramidal neuron nuclei (arrows) have significant pMcm?2
accumulation (D). Most control cases, representative case age 61
years, demonstrate no neuronal staining for pMcm2 protein (A),
while a few older control cases demonstrate significant nuclear
immunolocalization in the pyramidal neurons (control case age 74
years, C) Scale bar= 50 um.
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All AD cases examined, both with formalin and
methacarn fixation, contained many immunoreactive
NFT throughout the hippocampus. Additionally, the
binding of the anti-pMcm?2 antibody to NFT within AD
brains was striking and showed some co-localization
with phosphorylated tau on adjacent sections of AD
tissue In particular, many of the same NFT and senile
plaques demonstrated co-localization of tau with
pMcm2 in all AD cases (Figure 2). In Figure 3, the
specificity of the antibody to pMcm?2 protein was
confirmed by absorbing antibodies to pMcm2 with
phosphorylated and non-phosphorylated peptides. As
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Figure 2. In another AD case, age 63, adjacent hippocampal tissue
sections demonstrate many of the AD-related pathological struc-
tures (arrows) containing pMcm2 (A) are also positive for hyper-
phosphorylated tau (B) in the CA1 region. Lower magnification of

adjacent sections of the subiculum shows the large number of NFT

and plaques recognized by pMcm2 (C) and AT8 (D). * denotes
landmark vessel. Scale bars= 50 um (A,B), 100 um (C,D).

Figure 4.

Pretreatment with alkaline phosphatase to remove phos-

phate groups, results in elimination of pMcm2 reactivity (B) compared
to an untreated adjacent serial section of an AD case (A). * denotes

landmark vessel. Scale bar = 50 um.

expected, the phosphorylated peptide completely
absorbed the antibody producing no visible staining on
the section (Figure 3C) whereas the peptide lacking
phosphorylation failed to absorb the antibody (Figure
3B) and produced staining similar to that of the
unabsorbed sample (Figure 3A). Further confirmation
of the specificity was obtained by treating some sections
with alkaline phosphatase to remove phosphate groups.
Figure 4 shows that nearly all of the reactivity of the
pMcm?2 antisera is abolished following dephosphoryla-
tion on adjacent sections with (Figure 4B) and without
(Figure 4A) alkaline phosphatase pretreatment.
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Figure 3. Adsorption of pMcm?2 antibody confirms
specificity to corresponding pMcm?2 antigen. (A) AD
hippocampal tissue stained with pMcm2 antibody.
(B) Adjacent section treated with pMcm2 antibody
absorbed with non-phosphorylated Mcm peptide
demonstrates similar staining. (C) Adjacent section
treated with pMcm2 antibody absorbed with
phosphorylated Mcm2 peptide demonstrates
complete absorption. * denotes landmark vessel.
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DISCUSSION

In AD, multiple lines of evidence suggest that neurons
vulnerable to degeneration emerge from the post-
mitotic, quiescent state and are phenotypically
suggestive of cells that are cycling, rather than being in
the normal, terminally differentiated, non-dividing state
[43]. Such cell cycle re-entry has not only been linked
to cell death [44], but has also been implicated in the
hallmark pathologies of the disease, namely tau
phosphorylation and amyloid-B (AB) [23]. Nonetheless,
despite the identification of a variety of cell cycle
proteins in AD, there remains controversy over whether
these are truly indicative of a bona fide reaction of the
cell cycle or, instead, reflect the pleotrophic actions of
these protein markers [28]. Indeed, proteins previously
detected in AD such as Ki67, PCNA, cdc2, cdk4,
BRCAT1 and pRb [9, 44-49], although noted regulators
of the mitotic process, are also involved in neuronal
processes unrelated to the cell cycle such as DNA repair
[50], apoptosis [51], and oxidative stress [52]. Here,
however, the detection of a key component of the DNA
replication machinery Mcm2, phosphorylated in the
Cdk and Cdc7 dependent site Ser40/41 in AD neuronal
cytoplasm and NFT not only provides additional
support for the cell cycle hypothesis of AD [10], but
supports an authentic re-entrant phenotype associated
with DNA replication [53]. Mcm2 is in fact not
expressed in non-proliferating tissues, as shown in
neurons in age-matched control brain, but it
accumulates in G1 cells re-entering the cell cycle. Dual
phosphorylation of Mcm2 at serine 40 and serine 41,
then requires the activity of two kinases whose activity
is upregulated in S-phase by the periodic expression of
regulatory subunits, Cyclin and Dbf4 [54].

Very intriguingly, pMcm2 in AD neurons, unlike in
most cancer cell lines [42], appears to accumulate
mostly in the cytoplasm suggesting further degree of
deregulation of the MCM complex in disease tissues
that may explain the inability of neurons to progress
through cytokinesis.

The ectopic re-entry of neurons into the cell cycle likely
plays an important role mediating other aspects of AD
pathology. Specifically, the microtubule associated
protein tau, in cases of AD, exists in a highly
phosphorylated form and composes the NFTs that
burden the diseased brain, and this increased
phosphorylation of tau destabilizes microtubular
dynamics and results in neuronal dysfunction [55, 56].
Interestingly, while cells are mitotically active, the cell
cycle regulator proteins CDKs initiate a similar
phosphorylation of tau that precedes the appearance of
the NFTs [8] and suggests a possible cause-effect

relationship [23]. Similarly the major protein
component of senile plaques is a 4.2 kDa polypeptide
termed AP, which is derived from a larger precursor
(APP) encoded on chromosome 21. Attesting to the
importance of this protein, mutations in the APP gene
are linked to the inevitable onset of familial AD [57].
Given the probable role of mitotic re-entry in AD, it is
notable that APP is upregulated secondary to mitogenic
stimulation [58] and that APP metabolism is regulated
by cell cycle-dependent changes [59]. Interestingly, A
itself is mitogenic in vitro [60, 61] and therefore may
play a direct role in the induction and/or propagation of
cell cycle-mediated events in AD. Additionally, Ap-
mediated cell death, at least in vitro, is dependent on the
presence of various cell cycle-related elements [62].
Most importantly, the ectopic re-entry of neurons into
the cell cycle was recently shown to lead to cell death,
gliosis, and cognitive deficits—all cardinal features of
AD [24].

In conclusion, our results provide further support for the
role of cell cycle re-entry in the initiation and
progression and AD. As such, cell cycle inhibitors
present potential therapies for the disease [63].

METHODS

Tissue. Autopsy tissue samples were obtained using a
protocol approved by the Institutional Review Board at
University Hospitals of Cleveland. Hippocampal or
cortical tissue samples were obtained post mortem from
patients (n = 10, ages 63-91 years, mean = 81.8 years)
with clinically and histopathologically confirmed AD,
as well as from aged-matched controls (n = 8, ages 56-
86 years, mean = 70.2 years) with similar post mortem
intervals (AD: 2-31 h, mean = 14.5 h; controls: 5-27 h,
mean = 15.6 h). All cases were categorized based on
clinical and pathological criteria established by CERAD
and NIA consensus panel [64]. From the clinical reports
available to us, we found no obvious differences in
agonal status or other potential confounders between the
groups. Tissue was fixed in methacarn (methanol:
chloroform: acetic acid; 6: 3: 1 v/v/v) at 4°C overnight
or in routine formalin. Following fixation, tissue was
dehydrated through ascending ethanol, embedded in
paraffin, and 6-um sections were cut.

Immunohistochemistry. Tissue sections were deparaf-
finized in xylene, hydrated through descending ethanol,
and endogenous peroxidase activity was quenched by
30 minute incubation in 3% hydrogen peroxide in
methanol. Non-specific binding sites were blocked with
30 minute incubation in 10% normal goat serum.
Sections of both AD and control were immunostained
with rabbit polyclonal antibody to Mcm?2 phosphor-
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ylated at sites Ser40/41 (1:150) [42] or mouse
monoclonal antibody to tau (AT8 1:1000) recognizing
phosphorylated tau (Ser202/Thr205) (Pierce, Rockford,
IL) to identify the location of neuronal pathological
structures. Absorption experiments were performed to
verify the binding of the Mcm2 Ser40/41 antibody to
the appropriate phosphorylated peptide. The primary
antibody was incubated in 0.2mg/ml peptide containing
0 or 2 phosphates for 16 hours at 4°C prior to
immunostaining. All sections were immunostained

using the peroxidase-antiperoxidase with 3-3'-
diaminobenzidine as co-substrate as previously
described [65].
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