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Abstract: The chain-breaking antioxidant activities of reduced form of novel type of geroprotectors, mitochondria-targeted
quinones (QH,) have quantitatively been measured for the first time. To this end, the chain peroxidation of methyl
linoleate (ML) in Triton micelles was used as a kinetic testing model. The studied QH, were lipophilic
triphenylphosphonium cations conjugated by an aliphatic linker to an antioxidant, i.e. a ubiquinol moiety (MitoQH,) or
plastoquinol moiety (SkQH,). The antioxidant activity was characterized by the rate constant k; for the reaction between
QH, and the lipid peroxyl radical (LO,") originated from ML: QH, + LO,” — HQ" + LOOH. All the tested QH, displayed a
pronounced antioxidant activity. The oxidized forms of the same compounds did not inhibit ML peroxidation. The value of
k, for SkQH, far exceeded k, for MitoQH,. For the biologically active geroprotectors SkQ1H,, the k; value found to be as
high as 2.2 x 10° M~'s™, whereas for MitoQH,, it was 0.58 x 10° M~'s™. The kinetic behavior of QH, suggested that SkQ1H,
can rather easily diffuse through lipid-water microheterogeneous systems.

INTRODUCTION tion can occur. In the recent years, mitochondria-

targeted antioxidants has been developed [1-4].
The oxidative stress caused by reactive oxygen species Research was the series of papers published by our
(ROS) is assumed to significantly contribute to aging group in 1969-1970, where mitochondria-addressed
and numerous age-related pathologies. Mitochondria are penetrating synthetic cations were described and the
known as a place, where the most intensive ROS produc- idea to use these cations as “electric locomotives”
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targeting non-charged compounds to mitochondria was
put forward [5, 6]. In the late nineties, Murphy and
coworkers initiated the practical realization of this idea
[1, 7-9]. They synthesized and tested several mitochon-
dria-targeted antioxidants conjugated to the lipophilic
alkyltriphenylphosphonium cations. The ubiquinone
moiety linked to triphenylphosphonium cation by Cg
aliphatic chain, MitoQ (Figure 1), seemed to be the most
promising [1, 4, 9].

In 2005, an attempt was undertaken in our group to
replace the ubiquinone moiety in MitoQ by plasto-
quinone. As a result, a series of mitochondria-targeted
antioxidants named SkQ has been synthesized [2, 10].
There were two main reasons for this modification. (1)
Plastoquinone playing in chloroplasts the same role of an
electron carrier as ubiquinone does in mitochondria always

OH
Ph
"
Me P~Ph
OH SkQ1Hy Ph
Me.
( Ph
Me” T

operates under conditions of oxidative stress (elevated
oxygen concentration and an intensive ROS production).
(2) It was reported [11-13] that the reactivity of the
“tailless” plastoquinol analogs to the peroxyl radicals was
indeed higher than that of natural ubiquinols. The
advantage of mitochondria-targeted quinones of SkQ
type over MitoQ was recently demonstrated by using
several biological models. In particular, it was found that
very low doses of SkQ1 (nmol/kg per day) prolong life of
podospora, ceriodaphnia, drosophila and mice. In mice,
SkQ1 doubled median lifespan arrested development of
such traits of the senescence process as involution of
thymus and decline of other immunity mechanisms;
osteo-porosis; disappearance of regular estrous cycles in
females, cataract, retinopathies, balding, catinies,
hypothermia, chromosome aberrations, peroxidation of
lipids and proteins, etc. [10, 14-20].
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Figure 1. The structure of the mitochondria-targeted hydroquinones and other phenolics studied in this work.
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Figure 2. The reduction of SkQ1 by NaBH, as studied by UPLC-MS-MS analysis. A - Reverse-phase HPLC
chromatograms before and after the addition of NaBH,. B - MS/MS spectra of SkQ1 before reduction (at
the bottom) and after reduction (at the top). Details of the protocol are given in the text.

Until recently, the reactivity of the mitochondria-
targeted antioxidants has, in fact, not been
quantitatively determined. This was done in the present
paper. The structure of the compounds studied is
presented in Figure 1. The chain-breaking antioxidant
activity was characterized by the rate constant for
reaction of QH, with the lipid peroxyl radical, LO,",
formed from ML or cardiolipin:

LO," + QH, — LOOH + QH’ k; (1)
which competes with the reaction of chain propagation
of lipid peroxidation

LOZ. +LH (+02) ——> LOOH + LOZ. ks (2)
RESULTS

Figure 2 shows that SkQ1 is almost completely reduced
to SkQ1H, by NaBH4. For SkQ1, the m/z value was
found to be 537.08, which corresponds to the
theoretically calculated one. As expected, the m/z value
for SkQ1H,; proved to be 539.1, i.e. m/z increased by two
units as compared with that for SkQI1. Similar results
were also obtained for the reduction of other
mitochondria-targeted quinones.

The non-inhibited oxidation of ML in Triton micelles is
a chain process, which rate, Ry, was found to be
proportional to [ML] and square root of [AAPH] (not
shown) as it was reported in our preceding papers
[21,22]. Such relationships are also inherent in the lipid
peroxidation in other aqueous microheterogeneous
systems [23-25]. They correspond to the “classic”
kinetic scheme with bimolecular chain termination [26,
27].

AAPH + LH + (O;) —> LO," +products Ry (0)

LO," + LH + —>LOOH +L° k()
L'+ O, —> LO, ks (3
LO," +L0O," —— products 2ks  (4)

All the tested QH, displayed a pronounced chain-
breaking antioxidant activity as this is exemplified by
Figure 3 for SkQ1H,. When SkQ1H, was added, the
rate of oxidation, R, dramatically decreased. As
SkQ1H, was progressively consumed due to reaction
(1), R increased with time and eventually reaches the
level of non-inhibited oxidation. As a result, the
pronounced induction period was observed (Figure 3A).
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Figure 3. The effect of 5 uM SkQ1H, on the kinetics of oxygen consumption caused by oxidation of 20
mM ML in micellar solution of 50 mM Triton X-100 in 50mM phosphate buffer, pH 7.4, 37 °C. Oxidation
was initiated by 3 mM AAPH. A, [O,] trace; arrow shows addition of SkQ1H,. B, plot A in the axes of Eq. 7.

Quantitatively similar [O;] traces were observed with
all the other tested QH, as well as with a-tocopherol
and its synthetic analog 6-hydroxy-2,2,5,7,8-
pentamethylchromane (HPMC). As for C,,TPP, a
compound that has no hydroquinone moiety (Figure 1),
it did not display any inhibiting activity (not shown).
Meanwhile, oxidized form of SkQl showed a weak
inhibition of ML oxidation, but only during a very short
period of time (Figure 4). Most likely, the inhibition is
caused in this case by a minor contamination of
SkQ1H, to SkQIl. A similar effect was also observed
with other mitochondria-targeted Q. This suggests that
mitochondria-targeted quinones by themselves do not
act as a chain-breaking antioxidant.

The reduced forms of mitochondria-targeted quinones
studied in this work are p-hydroquinones. Acting as
chain-breaking  antioxidants during the chain
peroxidation of styrene p-hydroquinones, “tailless”
analogs of mitochondria-targeted antioxidants show a
very high inhibiting activity [11], sometimes
comparable with that of a-tocopherol (k; = 3.3 x 10°
M st [26]). For instance, k; for Me;BQH, was found
to be as much as 2.2 x 10° M's™" (Table 1). The
behavior of p-hydroquinones in such a system does not
differ from that of monophenolic antioxidants [26, 27].
The situation dramatically changes when going to the

peroxidation of ML in aqueous micelles [12, 28]. The
matter is that p-hydroxy-substituted phenoxyl radicals
QH"® formed in reaction (1) having, as a rule, pK less
than 5 [29] undergo fast deprotonation at neutral pH:

QH" — Q" + H' (%)
with the formation of semiquinone anion, Q°, which
reacts readily with molecular oxygen, forming O,

[30,31]:

Q" +0, — Q + 0" (6)
In turn, O," may react with oxidation substrate and
QH,, most likely in its protonated form, HO,". Both
reactions result in a decrease in the inhibitory activity of
QH, [28]. SOD removes O," and thus arrests the
mentioned undesirable reactions with the participation
of O," (HO,"). This was a reason why SOD was always
added to our system.

The [O;] traces recorded during the induction period of
the inhibited oxidation of ML were used to determine
ki. On the base of a reductive kinetic scheme, which
includes reactions (0), (1), (2), and (4), the following
equation can be deduced [11,12]
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(7)

where [LH] is the concentration of the oxidation
substrate (in our case ML). Figure 3B depicts the
original [O,] trace (Figure 3A) in the axes of Eq. (7). It
is seen that the plot of F vs. time is a straight line as
predicted by Eq. (7). The kinetic behavior of all the
other QH; studied proved to be was similar. The value
of ky/k, can be calculated from the slope of this straight
line by using Eq. 7. It should be noted that this way of
calculation of ki/k, does not require the knowledge in
Ry and the starting concentration of QH,. The values of
ki/k, are listed in Table 1. The absolute values of k;
were calculated from k;/k, assuming k, = 60 M s [22].

The k; values are also listed in Table 1.

With two QH,, SkQI1H, and MitoQH,, similar expe-
riments were conducted by using the same testing
system, but with substituting ML by cardiolipin, the most
oxidizable phospholipid component in mitochondria
membranes [32, 33]. As seen from Figure 5, both [O;]
traces during the induction period of the inhibited
oxidation and the plots of F vs. time are very similar to
those for ML. The value of k;/k, was calculated from the
slope of the plot B (Figure 5) by using Eq. (7) assuming
that each molecule of cardiolipin contains four fatty acid
residue with 87 % linoleate in the cardiolipin sample
used in this work (see www.avantilipids.com). These data
are also presented in Table 1. Unfortunately, the absolute
values of k; could not be calculated, as k, for the
oxidation of cardiolipin has never been reported.

QH,*® ki/ks ki x 10°, M s
SkQI1H, 3670 + 280 (7) 22402
1980 + 170 (3)° nd
SkQ3H, 2720 +210 (4) 1.6+0.1
SkQ5H, 2670 + 180 (5) 1.6+0.1
MitoQH, 970 £ 55 (6) 0.58 +0.03
520 37 (3)° nd
DMQH, 1260 + 85 (4) 0.76 + 0.5
Me;BQH, 2170 £ 130 (4) 13+0.1
234
Me,BQH, 5020 + 380 (3) 3.0£0.2
Ubiquinol-0 700 + 45 (3) 0.42+0.03
4.4
o-tocopherol 1170 £70 (4) 0.70 £ 0.04
HPMC 8680 + 700 (4) 52404

Table 1. Kinetic parameters characterizing the antioxidant activity of the reduced forms of mitochondria-
targeted quinones and their analogs in micellar solution of 50 mM Triton X-100, 50 mM phosphate buffer,
pH 7.4, at 37 °C. Oxidation of ML or cardiolipin was initiated by AAPH.

Notes: nd — not determined; ° structures of QH, are given in Figure 1; b figures in brackets are the number
of independent experiments; < ML is replaced by cardiolipin; 4 determined during styrene oxidation in the

bulk.
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DISCUSSION

In this paper, the reactivity of the reduced forms of the
mitochondria-targeted quinones as chain-breaking anti-
oxidants has systematically been studied. As may be
seen from Table 1, the k; value for SkQ1H,, SkQ3H,
and SkQ5H, are significantly higher than that for
MitoQH,. This is in line with the data for simple
“tailless” analogs of SkQ1H, and MitoQH,, namely
Me;BQH,, MesBQH; and Ubiquinol-0. The same
tendency was earlier observed when effects of “tailless”
analogues on the chain oxidation of styrene in bulk [11]
and ML peroxidation in SDS micelles were studied
[12]. Possible reasons why methyl-substituted p-
hydroquinones are better antioxidants than methoxy-
substituted p-hydroquinones were described elsewhere
[11, 26]. In brief, the effect under consideration is, the
most probably, stereoelectronic by its nature. The
matter is that o-methoxy group forms H-bond with
oxygen belonging to the adjacent OH group. This
causes the decrease in overlap between p-type orbital of
oxygen atom of OH-group and the aromatic n-electron
cloud (the increase of the dihedral angle between the
aromatic ring and O — H bond). The latter results in
strengthening O — H bond as compared with that in o-
methyl substituted QH,, where such an intramolecular
H-bond is absent.
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Figure 4. The effect of addition of 10 uM SkQ1 on the kinetics
of oxygen consumption during the oxidation of 20 mM ML in 50
mM micellar solution of 50 mM Triton X-100 in 50mM
phosphate buffer, pH 7.40, 37 °C, initiated by 3 mM AAPH.
Arrow shows the moment when SkQ1 was added.

Among mitochondria-targeted QH, studied in this work,
SkQ1H; showed the highest reactivity towards the lipid
peroxyl radicals (Table 1). This observation is in line
with data obtained in our group by using several
biological models [2, 10, 14]. However, we recognize
that the highest value of k; for SkQ1Hj, is likely not the
only reason for the outstanding biological activity of
SkQI1. It should be taken into account that k; given in
Table 1 are effective values and cannot be directly
attributed to the elementary reaction (1). The genuine
values of k; can be determined during the chain
oxidation in non-polar media, for instance in styrene
[11, 34, 35]. When going to the oxidation of fatty acid
(ester) in bulk [12, 36] and further to the oxidation in
aqueous micelles and liposomes [12, 26, 37], the
experimentally determined k; values significantly
decrease, nearly by one order of magnitude (see data for
ubiquinol-0, Table 1). A reason for such a reduction of
k; was repeatedly discussed. The mentioned decrease in
k; is not specific of QH,. A similar effect has earlier
been also reported for the oxidation inhibited by
monophenolics [25, 26, 37, 38]. The formation of H-
bonds between the OH-group of phenolics and the
carboxy-group of ML has been suggested as the main
reason for the k; decrease when going from the
oxidation of non-polar hydrocarbon to that of fatty acid
(ester) [36]. Recently, hydrogen bonding between
phenols and fatty acid esters was directly observed by
using the NMR technique [39]. Most likely, this is also
true for QH, studied in this work. The further decrease
in k; when going from ML oxidation in bulk to that in
aqueous micelles may be explained by the additional
formation of H-bonds between QH, and water
molecules as this was earlier suggested for
monophenolics [23, 37, 38].

A general specific feature of reduced forms of the
studied mitochondria-targeted quinoles is that their
reactivity is actually very close to that of their “tailless”
analogs (Table 1). This is in contrast to the couple “o-
tocopherol having the long aliphatic chain its “tailless”
analog HPMC. The k; value for a-tocopherol is nearly
one order of magnitude lower than that for HPMC
(Table 1). This effect was reported to be even more
pronounced in the SDS micelles [23, 37, 38]. The
essential feature of our testing system and related
microheterogeneous systems is that the concentration of
the antioxidants tested is much lower than that of the
oxidation substrate (in our case ML). While every
micelle (microreactor) contains several molecules of
ML, only a few micelles contain an antioxidant. Under
these conditions, a fast LO," reduction by an antioxidant
is possible only if an antioxidant is capable of fast
transferring from one microreactor to another, the
characteristic time of this transfer being shorter than the
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Figure 5. The effect of addition of 10 uM SkQ1H, on the kinetics of oxygen consumption during the
oxidation of 2.6 mg mL™ cardiolipin 50 mM micellar solution of 50 mM Triton X-100 in 50mM phosphate
buffer, pH 7.40, 37 °C, initiated by 3 mM AAPH. Arrow shows the moment when SkQ1H, was added.

time of the occurrence of a single kinetic chain. The
antioxidants with a rather long aliphatic residue like .-
tocopherol commonly do not meet such a requirement
[37]. The fact that the values of k; for the mitochondria-
targeted quinols actually do not differ from that of their
“tailless” analogs (Table 1) means that all of them are
capable of the fast transfer from one microreactor to
another. This is in line with a high reported ability of
SkQ and MitoQ to easily penetrate through biological
membranes [14].

MATERIALS AND METHODS

Methyl linoleate and Triton X-100 were purchased from
Sigma, heart bovine cardiolipin disodium salt was
received from Avanti PolarLipids. The water-soluble
initiator 2,2’-azobis(2-amidinopropan) dihydrochloride
(AAPH) was obtained from Polysciences. NaH,PO,4 and
Na,HPO, of the highest quality used to prepare buffer
solutions were purchased from Merck. The
mitochondria-targeted quinones, SkQ1, SkQ3, SkQS5,
MitoQ, DMQ as well as C;,TPP (see Figure 1) were
synthesized in the Mitoengineering Centre of Moscow
State University [2]. Trimethylhydroquinone (Me;BQH,)
was purchased from Aldrich; 2,3-dimethoxy-5-methyl-
benzoqyuinone (ubiquinone-0) was from Sigma;
tetramethylbenzoquinone (Me4BQ) was from EGA
Chemie. All the other chemicals were of highest
available quality.

The reduced forms of the mitochondria-targeted
quinones (QH,) were produced by the reduction of
corresponding quinones by NaBHj, in the mixture of 50
mM NaH,PO, (pH 5.0) with ethanol. This process was
under control of UPLC-MS-MS (see below). Reduced
forms of ubiquinone-0 and tetramethylhydroquinone
(MesBQH,) were produced by reduction of the
quinones by Zn powder [21]. The buffer solution (pH
7.40 £ 0.02) was prepared by mixing 50 mM solutions
of NaH,PO, and Na,HPO,. In turn, the solutions of the
individual sodium phosphates were prepared with
doubly distilled water and were purged from traces of
transition metals by Chelex-100 resin (Bio-Rad).

HPLC-diode array detection-electrospray ionization
tandem mass spectrometry analysis (UPLC-MS-MS)
was performed using an ACQUITY system (Waters,
Milford, MA, USA). Chromatography was carried out
using an ACQUITY BEH C18 column (2.1 x 50 mm,
1.7 pum) eluted with a gradient of 40-60% acetonitrile (4
min) and 20 mM acetic acid (pH 3.0) delivered at a flow
rate of 0.5 mL per min. UV-monitoring was performed
at 280 mm. An injection volume of 11.2 pL (full loop)
was used in all cases. A Quattro triple-quadrupole mass
spectrometer (Micromass-Waters) fitted with a Z-Spray
ion interface was used for analyses. lonization was
achieved using electrospray in a positive ionization
mode. The following conditions were found to be
optimal for the analysis of SkQ1: capillary voltage, 3.0
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kV; source block temperature, 120°C; and desolvatation
gas (nitrogen) heated to 450°C and delivered at a flow
rate of 800 L h_l; cone voltage, 55 V; cone Gas Flow
rate, 50 L h™". MassLynx 4.0 software (Waters) was
used for processing.

The standard testing system was composed of 50 mM
buffer, pH 7.4, 50 mM Triton X-100, 2-4 mM AAPH,
820 mM ML and 20 unit mL™' SOD. In some
experiments, ML was replaced by cardiolipin. The
kinetics of oxygen consumption accompanied ML
(cardiolipin)  oxidation were studied with a
computerized 5300 Biological Oxygen Monitor (Yellow
Springs Instruments Co., USA) with a Clark electrode
as a sensor. The rate of oxidation was measured as a
slope of [O;] traces. Experiments were conducted at
370 £ 0.1 °C. ML was added to preliminarily
thermostated micellar solution of Triton X-100 and
AAPH in buffer. Monitoring was started 3-5 min after
ML addition and the rate of non-inhibited oxidation (Rg)
was measured. The tested compounds were then added
to a reaction chamber under steady monitoring as a
stock solution by using a Hamilton micro-syringe. In
more detail, the protocol was described elsewhere [12,
21, 22].
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