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P66Shc signals to age
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Abstract: Oxygen metabolism is thought to impact on aging through the formation of reactive oxygen species (ROS) that
are supposed to damage biological molecules. The study of p66$h°, a crucial regulator of ROS level involved in aging
dysfunction, suggests that the incidence of degenerative disease and longevity are determined by a specific signaling
function of ROS other than their unspecific damaging property.

What we can learn from longevity mutants prolongs life span and protects from a variety of aging-
associated diseases without showing apparent negative

The reason why we age seems obvious: entropy effects.

increases. The reason why different species are

differently affected by passing of equal time should be P66 5" is a redox signaller

apparent as well: genetic and epigenetic variability.

Organism modification with time has been mainly P66°™ is a vertebrate protein. It is present in Xenophus,

explained by the production of free radicals as well as Botia Dario and mammals, while it is absent in

by immunological theories of aging. However, what we Saccaromyces, Drosophila or Caenorhabditis [1]. P66°™

still miss is a list of genes responsible for aging; the is one of three isoforms encoded by the ShcA locus [2].

study of these genes would tell us what aging is.
The other two isoforms, p46™ and p52%", with

Senectus ipsa morbus est (Old age is in itself a disease), molecular weights of 46 and 52 KDa respectively, were
ancient romans said. However, the incidence of disease first described as ‘adaptor’ proteins that specifically
decreases in the extreme elderly, when aging expression bind to phosphorylated tyrosines on the cytoplasmic
reaches its maximum, whereas progeric syndromes motif of growth factor receptors. Upon growth factor
associate to disease. Therefore, it is not clear whether stimulation, p52°"/p46°™ proteins are rapidly and
aging itself is a disease and how it would impact on life efficiently tyrosine-phosphorylated by all the tyrosine
span in a protected environment. kinase receptors tested in three major tyrosine residues,

and recruit the Grb2-Sos complex on the plasma
Our contribution to this field arises from the study of membrane [3]. In turn SOS, through its GEF activity,
p66°", the first protein identified whose deletion in mouse stimulates the conversion of the inactive Ras GDP into
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an active Ras GTP that subsequently activates the
mitogen-activated protein kinase (MAPK) cascade.
Recruitment of the Grb2/Sos complex by p52°"“/p46°"
and membrane relocalization of Sos are events
considered sufficient to induce Ras activation [3]. The
hypothesis that Shc proteins are involved in the
regulation of Ras is further supLJorted by the finding that
over-expression of p52%"/p46>" increases proliferative
response and enhances MAP kinase and Fos activation
upon stimulation with EGF, GM-CSF and PDGF
[2,4,5]. Notably, the shortest isoforms of Shc appeared
early in evolution since their orthologues have been
found in flies and nematods [1].

h h
6SC ZSC

At molecular level, p66™", p5 and p46°™ largely
share the same amino acid sequence at the C-terminus
including the Src homologous type two domain (SH2),
phosphotyrosine binding domain (PTB) responsible for
the binding to phosphorylated tyrosine, and a region
highly enriched in glycine and proline residues named
collagen homologous (CH1) since its homology with
collagen protein [6]. The peculiarity of p66Shc is an
additional CH region (CH2) at its N-terminus [2, 4].
Despite the high similarity p66%™ functionally
differentiates from the other ShcA isoforms. There is no
indication that p66°™ activates the Ras signaling
pathway. Indeed, evidence for divergent regulation of
p66°™ versus p525"/p46°™ immediately emerged from
studies demonstrating that although p66°™, like p525"
Ip46°™ is a target of receptor tyrosine kinases (EGFR,
INSR, PDGFR) and binds the Grb2/SOS complex
[4,7,8], p66°™ over-expression, unlike that of
p52°"/p46°™, has a negative effect on the Ras-MAPK-
Fos pathway in response to EGF or cytokines in
lymphocytes [4,9]. In fact, p66°™ has been shown to
exert an inhibitory effect on the Erk pathway, which is
necessary for coordinated actin cytoskeleton poly-
merization [10], and normal IGF-1 responsiveness of
the MEK/ERK pathway in myoblasts [11]. How p66°"
exerts this negative effect is not clear. It was proposed
that it acts by competing with p52Shc for Grb2 binding,
sequestering the Grb2/Sos complex and therefore
terminating Ras signaling [11].

Finally, studies on p66™° knock down did not
demonstrated any role for p66Shc in growth factor
response or Ras signaling whereas they revealed an
unexpected function of p66™ in regulating intracellular
redox balance and oxidative stress levels [12]. Indeed,
compared to WT, the amount of reactive oxg/gen species
(ROS) was shown to be decreased in p66°"- depleted
cultivated cells, as revealed by the reduced oxidation of
ROS sensitive probes as well as by the reduced
accumulation of endogenous markers of oxidative stress

[9, 13-17]. Likewise, p665h°-/- mice show diminished
levels of both systemic (isoprostane) and intracellular
(nytrotyrosines, 8-oxo0-dG) oxidative stress [14, 18, 19].

Mechanisms of p66 >"°

- redox activity regulation
Basically, intracellular ROS levels can be increased by
three main mechanisms: reducing ROS scavenging,
increasing membrane oxidases activity, or by mito-
chondrial respiratory chain leakage. P66°™ has been
reported to act through all of them. In fact, p66ShC
silencing by RNAI or gene targeting deletion was found
to increase levels of superoxide dismutases and
catalases in a variety of cells. In particular, p66Shc
appeared to decrease the expression of ROS scavenging
enzymes through the inhibition of FOXO transcription
factors [13] (Figure 1). In addition, p66ShC has been
proposed to mask the growth factor receptor bound
protein Grb2 from Sos1, favoring the racl-specific GEF
activity of Sosl, racl activation and triggering of
NADPH membrane oxidase ROS production [20]
(Figure 1).

Finally, a fraction of p66ShC has been observed within
the mitochondrial inter-membrane space (IMS) [16].
Notably, electrochemical experiments demonstrated that
the amino terminal portion of p66Shc contains a redox
active region able to mediate electron transfer from
reduced cytochrome ¢ to molecular oxygen, thus
producing hydrogen peroxide (Figure 1).

As reported, all proteins of the mitochondrial inter-
membrane space are synthesized in the cytosol and are
then imported into the mitochondria [21]. Most of them
do not contain any cleavable sequences and are targeted
to IMS by as yet unidentified import signals.

The import of p66°™ into mitochondrial IMS is not still
understood at a mechanistic level. However, a
mechanism that depends on p66°™ post-translational
modifications, including serine phosphorylation by
stress kinases like Jnk-1 and Pkc-B and prolil-
isomerization by Pin-1, has been described, which
allows p66°™ increase within the mitochondria during
apoptosis [22]. A second level of activation of p66ShC
mitochondrial function is represented by the effective
amount of p66Shc within mitochondrial vesicles. In fact,
mitochondrial p66Shc has been observed to associate to a
high molecular weight complex of about 670 KDa and
to the mitochondrial chaperon mtHsp70 [23]. Notably,
treatment of cells with pro-apoptotic stimuli such as
UVC or H,0, induces the dissociation of this complex
and the consequent release of monomeric p66°", which
is then free to react with cytochrome c [23].
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Figure 1. P66°™

controls intracellular ROS metabolism at multiple sites. P66
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ROS production by plasma membrane oxidases through the association with membrane receptor and Rac
activation of phagocitic oxidases. Upon phosphorylation and consequent Pin-1-mediated conformational

changes, p66°™

(in red) translocates, through the TIM/TOM mitochondrial import machinery, within the

mitochondrial inter-membrane space where it oxidizes reduced cytochrome ¢ and catalyzes the partial

Shc

reduction of O, to H,0,. Then, p66° ~ decreases the expression of ROS scavenging enzymes.

Interestingly, p66Shc half-life increases upon apoptotic
stimulation in a p53- dependent way, thus linking the
pro-apoptotic activity of p66 ° to the p53 pathway [14].

Function of p66 She_ oxidative signal
Regardless of how p66°™ may shift the intracellular
redox balance towards oxidation, it appears that p66°"
specifically evolved to increase intracellular ROS
levels. In this view, different functions have been
assigned to p66°™- produced ROS. Initially it was
reported that H,O, produced by p66°™ within the
mitochondria induces the opening of the mitochondrial
permeability transition pore leading to swelling of the
organelle  [16]. The consequent rupture of mito-
chondrial integrity then triggers the release of various
proapoptotic ~ mitochondrial ~ factors, including
cytochrome c, into the cytosol, where they activate the

apoptotlc cascade leading to cell death [23]. Indeed,
p66°"-/- cells have been demonstrated to be resistant to
apoptosis induced by a variety of different signals,
including ultraviolet radiation, staurosporine, growth
factor deprivation, calcium ionophore, CD3-CD4 cross-
linking and taxol [9, 12, 23]. Likewise, p665°/ mice
were found resistant to apoptosis induced by paraquat,
hypercholesterolemia, ischemia, angiotensin 1l, carbon
tetrachloride and ethanol [12, 15, 16, 18]. Notably,
p66°™ deletion in mice was shown to improve
resistance to hyperglycaemic damage in diabetic model
of nephropathy and cardiovascular diseases due the
reduction of apoptosis and cell loss [24, 25].

Recently, another role for p66°™ - mediated ROS has
been described in the regulation of adipogenesis. In
adipocytes, p66°™ was demonstrated to be involved in
insulin-induced gene expression regulation and tri-
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glyceride accumulation. In fat cells insulin induces serine
36 specific phosphorylation of p66°™ thus stimulating
p66S ° ROS production, which, in turn, potentiates insulin
transduction signaling. Indeed, mutants unable to
translocate to the mitochondria and to produce H,0, do
not sustain insulin-dependent signaling and triglyceride
accumulation when reintroduced in p66°™-/- cells [17].
Interestingly, some phosphatases inhibiting insulin
signaling (e.g. PTEN) are inactivated by oxidation [26].
Thus, it appears that p66°™ -generated ROS play a crucial
role in regulating insulin signaling and fat development,
likely through the modulation of these redox-sensitive
phosphatases. Indeed, p66°"*-/- mice are protected from
diet-induced obesity, suggesting that this molecular
pathway regulates diet-associated fat development [17].
But if p66°" is able to convert signals from the diet into
variations of the intracellular redox balance, affecting
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insulin sensitivity, critically, the process that triggers
adipogenesis following food intake should stem from the
integration of both intracellular (mitochondrial ROS
production) and extracellular (circulating insulin) signals
[17] (Figure 2).

Notably, p66 5™ - produced H,0, might control
intracellular signaling events also in tissues other than
fat. In particular, the response of myocytes and
endothelial cells to glycaemia and ischemia, as well as
the renewal control of breast stem cells upon hypoxia,
has been linked to p66°"- redox activity [24, 27-29].
Therefore, p66Shc behaves like an atypical signal
transducer that tunes membrane receptor signaling or
intracellular glucose/oxygen sensing via the regulation
of intracellular re-dox balance.
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Figure 2. Regulatory circuit of p665h°-mediated fat development. The scheme recapitulates the

pathway of p66™™

that drives mitochondrial H,0, and its relationship with insulin receptor signaling

leading to fat accumulation. Food intake determines energetic substrate availability and insulin
stimulates intracellular transduction pathways that regulate gene transcription in order to favor
triglyceride accumulation. P66°™-mediated ROS production is directly boosted by insulin and in turn
potentiates insulin receptor signaling, suppresses the expression of uncoupling proteins and beta
oxidation enzymes leading to triglyceride accumulation.
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P66°™ impacts on overall energy metabolism and
aging

Was the p66Shc gene conserved during mammals
development, in spite of its deleterious effects on life-
span and disease, because of p66°™- mediated ROS
signaling function in fat tissues?

P66°"°-/- mice have reduced body weight, due to
reduced fat mass of both white and brown adipose
tissues [17]. This leanness is not explainable by changes
in food intake, intestinal absorption of nutrients or
locomotor activity. Rather, it may reflect defective
lipogenesis in adipocytes, as suggested by the reduced
lipid accumulation of p66°™-/- adipocytes transplanted
into WT recipient mice [17]. However, this
interpretation of the mechanisms leading to decreased
fat mass in p66°"°-/- mice poses the question of how
energy balance is maintained in the absence of p66°",
and why energy storage is reduced. As p665h°—/- mice
showed increased basal body temperature and increased
basal metabolic rate, this suggests that increased
uncoupled respiration in the fat mitochondria of p665h°—
/- mice leads to increased energy expenditure, which
contributes to resistance to body weight gain [17].

Fat has a crucial role in the thermoregulation of
mammals. It protects from body heat loss (thermo-
insulation) and generates heat for the maintenance of
body temperature when animals are exposed to cold
(thermo-genesis). Notably, p66°"*-/- mice were found to
be more sensitive to cold due to the reduced thermal
insulation effect of fat pads [17]. Therefore, adaptation
to cold as well as optimization of energy storage when
food is available, both altered in the lean p665h°—/- mice,
have been proposed as possible evolutionar3¥ functions
whose fitness pressure preserves the p66>"° gene in
mammals.

These findings of reduced adiposity in p665h°-/- mice
might have important implications for the effect of
p66°™ on lifespan. Aging is associated with a
pathological trait, often associated with obesity
(metabolic syndrome), which predisposes to diabetes
and cardiovascular diseases [30-34]. In humans, these
diseases strongly affect morbidity and mortality,
especially among the elderly [30, 35]. Oxidative stress
has been implicated in a number of chronic disease
states usually grouped under the umbrella of the
metabolic syndrome [36-42], and it is thought to
contribute to the aging process [43]. It has been
hypothesized that the production of free radicals is
dependent on metabolic rate [44], and that this may
have an impact on the aging process. In p66°"°-/- mice,
like in caloric restriction and FIRKO mice, fat deposits

are moderately decreased [17, 45], suggesting that
reduced oxidative stress in p66°™-/- mice might increase
longevity through the direct effect of reduced adiposity.
Notably, p668h°-/- mice are more resistant to diabetes and
have reduced risk of atherosclerosis and cardiovascular
damage upon HF-diet [18, 25]. Therefore, the effect of
p66°™ on aging might be considered a sort of chronic
decay like the metabolic syndrome progression, although
the contribution of the metabolic syndrome to life span is
still not clear (Figure 3).
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Figure 3. P66

aging associated dysfunctions. P66°"/ROS signals to
specific functions that improve fitness whilst these same
functions may increase disease risk chronically (such as obesity
related disorders) and contribute to trigger p665hc—mediated
cell death. Then, increased disease risk and cell loss rate

contribute to aging dysfunctions.

The life-prolonging action of caloric restriction (CR)
offers an excellent chance for investigating the
connection between stress and aging. The anti-aging
action of CR can be viewed as "nutritional stress,"
because the organism's reduced caloric intake seems to
be a stimulatory metabolic response for survival. Thus,
as an omnipotent intervention, CR provides a unique
opportunity to probe the organism's ability to withstand
age-related stress as a survival strategy. Recent geriatric
research has provided sufficient experimental data
supporting the anti-aging property of CR [46-48].
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What kills mammals is a “p6 syndrome”

Finally, the study of p66%™ confirms that very close
links exist between energetic metabolism, oxidative
stress and aging. P66°™ represents a clear example of an
antagonistic pleiotropic function, which generates both
beneficial and detrimental phenomena in an organism.

Darwin might say that aging expresses fitness (senectus
robur est), at least as much as one is able to face illness.
However, it remains unclear whether aging is also a
disease or whether life span is regulated by energetic
metabolism disorders that could eventually result in
lethal effects or sub-pathological multiple dysfunctions.

In a series of WT and p66°"-/- very old moribund mice,

significant recurring cause of death were not identified.
Indeed, it is known that in mice as in humans even
accurate autopsy might often remain “blank", in the
absence of masses, haemorrhages, abscesses or other
evident septic conditions. Mice presented only sporadic
terminal emphysema (mainly in WT mice), occasional
lymphocytic pneumonia and very rare malignant
tumors. On the other hand, it is impossible to rule out
other causes of death, such as cardiac fibrillation or
acute myocardial infarction, which score negative for
morphological investigation (unpublished data).

In conclusion, whether aging determines life span
through diseases or through the acceleration of a fatal
physiological decline remains puzzling. It is expected
that further, more intense investigations in the cause of
death in mammals might contribute to the solution.

P66°" story suggests that necessary regulators of
oxygen and energetic metabolism may be involved both
in the onset of the acute phase of diseases and in the
induction of aging related detrimental changes that
ultimately kill the organism.
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