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Serum markers of apoptosis decrease with age and cancer stage
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Abstract: The physical manifestations of aging reflect a loss of homeostasis that effects molecular, cellular and organ
system functional capacity. As a sentinel homeostatic pathway, changes in apoptosis can have pathophysiological
consequences in both aging and disease. To assess baseline global apoptosis balance, sera from 204 clinically normal
subjects had levels of sFas (inhibitor of apoptosis), sFasL (stimulator of apoptosis), and total cytochrome c (released from
cells during apoptosis) measured. Serum levels of sFas were significantly higher while sFasL and cytochrome c levels were
lower in men compared to women. With increasing age there was a decrease in apoptotic markers (cytochrome c) and pro-
apoptotic factors (sFasL) and an increase in anti-apoptotic factors (sFas) in circulation. The observed gender differences are
consistent with the known differences between genders in mortality and morbidity. In a separate cohort, subjects with
either breast (n = 66) or prostate cancer (n = 38) exhibited significantly elevated sFas with reduced sFasL and total
cytochrome c regardless of age. These markers correlated with disease severity consistent with tumor subversion of
apoptosis. The shift toward less global apoptosis with increasing age in normal subjects is consistent with increased
incidence of diseases whose pathophysiology involves apoptosis dysregulation.

INTRODUCTION
persist [7-9]. Thus, cellular maintenance protocols

Apoptosis is an evolutionary conserved program that involve a delicate balance in pro- and anti-apoptotic
leads to cell death. Apoptotic cell death plays a role in factors/signals.

normal development (e.g. - embryogenesis, morpho-

genesis) and in maintaining adult homeostasis (e.g. - Fas is a cell-surface receptor that transduces apoptotic
immune response resolution, tissue remodeling, signals from another cell-surface receptor Fas ligand,
elimination of damaged/dysfunctional cells) [1, 2]. The FasL [10, 11]. Fas and FasL have also been observed as
physical manifestations of aging reflect a loss of soluble molecules. Soluble Fas arises from alternatively
homeostasis that effects molecular, cellular and organ spliced mMRNA (9, 10) and all variants of sFas inhibit
system functional capacity. As a sentinel homeostatic apoptosis induced by FasL [12, 13]. FasL can undergo
pathway, changes in apoptosis can have patho- proteolytic cleavage to liberate a 26 kDa soluble form
physiological consequences in aging. For example, too of the molecule [14]. The physiological role of sFasL in
much apoptosis can yield tissue degeneration [3-6], the regulation of apoptosis remains unclear as both
while too little apoptosis allows either dysfunctional stimulatory [15, 16] and inhibitory [17, 18] activity has
cells to accumulate or differentiated immune cells to been reported. Cytochrome ¢ has a well defined role in
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triggering apoptosis and as a marker of apoptosis [19],
though it was recently shown that cytochrome c¢ exists
in a complex in serum with leucine-rich alpha-2-
glycoprotein-1 which altered immunoreactivity [20]. In
order to assess the global balance of systemic markers
of apoptosis, we developed an immunoassay to measure
total serum levels of cytochrome ¢ and determined the
distribution and levels of sFas, sFasL and total
cytochrome ¢ in serum from a large clinically defined
normal group. In addition, we used the same surrogate
markers of apoptosis to characterize their levels in a
group well characterized as having altered apoptosis
(i.e. - cancer subjects).

RESULTS
We determined serum levels of sFas in 204 normal sub-

jects. For all subjects, values for fasting glucose, thyroid
panel, and calculated BMI were within the normal range.

The mean value for sFas was 4107 + 1352 pg/ml. When
the frequency distribution of serum values was analyzed
by histogram, a slight hook at the high end was evident
(Figure 1a). The results were stratified by gender to
further study the distribution. For the samples obtained
from the 94 female donors, the mean donor age was 53
and ranged from 21 to 87, while for the 110 male donors,
the mean age was 52 and ranged from 22 to 88. Serum
levels of sFas were significantly higher in males than in
females, comparing by a Mann Whitney test (Figure 1b
and Table I). Mean BMI values were 22.6 + 1.4 and 22.1
+ 1.6 kg/m2 for women and men, respectively. The
difference by gender in sFas levels was still significant
after controlling for BMI. When sFas levels were plotted
versus the age of the subject, the reason for the high-end
hook to the distribution of normal values became
apparent. Both genders exhibited an age-dependent
increase in sFas values with age (Figure 1c and d).
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Figure 1. Serum sFas levels. The levels of sFas in 204 normal subjects was determined by
sandwich ELSA. The frequency distribution of the values across the subjects was analyzed (a). The
levels of sFas by gender were plotted (b). The sample population was segregated by gender and the
levels of serum sFasL as a function of donor age for female (c) and male (d) subjects were plotted.
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Table I. Serum levels of apoptosis biomarkers

sFas (pg/ml)

female male

sFasL (pg/ml)
female

mean+SD | 3625+1010 4475+1459 | 94.6+22.3

median 3424 4303 97.9 92.4 0.663 0.566
(range) | (1592-6498) (1710-8026) | (45.8-139.4) (40.6-145.6) | (0.24-1.33)  (0.13-2.22)
gender ? p < 0.0001 p=0.13 p =0.053

ager b 0.651 0.647 -0.534 -0.337 -0.719 -0.855

p value © <0.0001 <0.0001 <0.0001 <0.001 <0.0001 <0.0001

Cytochrome ¢ (ug/ml)

male female male

01.2+20.8 | 0.712£0.206 0.7030.420

Biomarker levels were compared by gender. The association of serum levels with donor age was

analyzed by Spearman correlation.

® Mann Whitney U-test comparing serum values in females versus males
Correlation coefficient (r) for Spearman nonparametric correlation analysis of serum biomarker

levels and donor age.

¢ P value for Spearman nonparametric correlation analysis of serum biomarker levels and donor

age.

The serum levels of sFasL were determined in the same
subjects. The mean value for sFasL was 92.8 + 21.5
pg/ml. When the distribution of serum values was
analyzed by histogram, a slight hook at the low end was
evident (Figure 2a). Again, the results were stratified by
gender to further study the distribution. Serum levels of
sFasL were not significantly different between genders
(Figure 2b and Table I). Plotting sFasL levels versus the
age of the subject revealed that both genders exhibited
an age-dependent decrease in sFasL values (Figure 2c
and d).

While a role for sFas as an anti-apoptotic factor is
accepted in the literature, the pro-apoptotic role of
sFasL is more equivocal [15-18]. A third marker for
apoptosis was developed. Cytochrome ¢ release from
the mitochondria is a sentinel signal initiating apoptosis
[21] and serum levels of cyt-c have been used as a
marker of apoptosis [22, 23]. However, cytochrome c is
bound to in serum to leucine-rich alpha-2-glycoprotein-
1 which can mask antibody epitopes, potentially
interfering with immunoassay quantification [20]. We
developed a quantitative western blot using purified cyto-

chrome ¢ to generate a standard curve and interpolate
unknown concentrations from serum samples that had
been denatured and reduced thereby disrupting binding
complexes and enabling the quantification of total
cytochrome c levels (Figure 3).

The mean value for serum levels of total cytochrome ¢
was 0.71 £ 0.42 pg/ml. The frequency distribution of
serum values was analyzed by histogram and a
nonparametric distribution was evident (Figure 4a).
When the results were stratified by gender, the
difference in mean (and median) values by gender were
not significant (Figure 4b and Table I). Plotting total
cytochrome ¢ levels versus the age of the subject
revealed that both genders exhibited an age-dependent
decrease in total cytochrome c, though the slopes
appeared to be different (Figure 4c and d).

Because of the nonparametric distribution of these
apoptotic markers, the association of serum levels with
donor age was analyzed conservatively by Spearman
nonparametric correlation (Table I). Significant correla-
tions of subject age versus serum marker levels were
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observed. sFas in serum correlated positively with
increasing age among females, among males and among
the two combined. In contrast, FasL and total cytochrome
c correlated negatively with age. Segregating serum
samples by gender and by decade of life enabled
statistical comparison of gender values by decade using a
nonparametric Mann Whitney test. Between the ages of
41 and 80, females had significantly lower levels of the
anti-apoptotic marker sFas compared with men (Figure
5a). The serum levels of the potentially pro-apoptotic
sFasL, although higher on average in females, were not
significantly different then those in men over the seven
decades (Figure 5b). The apoptosis marker cytochrome ¢
exhibited levels that were different between men and
women from perimenopausal ages onward (Figure 5c).

The observed shifts in the balance of pro- and anti-
apoptotic factors (sFasL and sFas, respectively) and the
apoptosis marker (cytochrome c) with age are consistent
with decreased net apoptosis with increasing age.
Neoplasm growth and tumor progression rely in part on
blocking apoptosis [24-26]. Serum from a group of
women with breast cancer (n = 66) and men with
prostate cancer (n=38) were analyzed for sFas, sFasL
and total cytochrome ¢ and the distribution of the values
compared with age and gender-matched normal values
(Table I1). sFas levels were significantly elevated in
both breast and prostate cancer. In contrast, sFasL and
cytochrome c levels were significantly reduced in both
breast and prostate cancer.
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Figure 2. Serum sFasL levels. The levels of sFasL in 204 normal subjects was determined by
sandwich ELSA. The frequency distribution of the values across the subjects was analyzed (a). The
levels of sFasL in all subjects as a function of gender were plotted (b). The sample population was
segregated by gender and the levels of serum sFasL as a function of donor age for female (c) and

male (d) subjects were plotted.
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Figure 3. Total cytochrome c assay. A quantitative western blot assay was developed to measure total
cytochrome c in serum. The assay employed denaturing and reducing conditions to disrupt cytochrome c
binding to carrier proteins in serum. The assay utilized serial dilutions of purified cytochrome-c resolved by
SDS PAGE and western blotting (a) to generate standard curves (b) by digitally imaging and quantifying the
chemiluminescent signal and serum from men (c) and women (d) were analyzed in parallel. Standards and

serum samples were analyzed in duplicate.

The association of cancer stage groupings with
apoptosis markers was investigated for breast and
prostate cancer. The breast cancer serum values were
segregated by stage where stage | is small localized
tumors with no spreading to axillary lymph nodes; stage
Il disease has larger tumors and potential spread to the
lymph nodes; stage Il disease has spread to other
lymph nodes or tissues near the breast; while stage 1V is
metastatic cancer. For prostate cancer, stage Il cancer is
localized within the prostate but palpable, stage Il
cancer has broken through the covering of the prostate
but is still regional, and stage IV cancer has spread to
other tissues. When the distribution of sFas, sFasL and
cytochrome ¢ were profiled by stage using Tukey box
plots, discrete patterns were observed (Figure 6).

Serum sFas levels increased with increasing stages of
breast cancer (Figure 6a). While stage | disease was not
significantly different from normal, stages Il, 11, and IV
were significantly elevated relative to the normal. The
more advanced stage Ill disease was significantly
elevated compared to normal and earlier stages, and
significantly lower compared to stage IV disease. Meta-

static disease (stage 1V) was significantly elevated
compared with all other stages and had a median value
~2-fold higher then normal and stage | breast cancer.
Serum sFas levels in prostate cancer exhibited a similar
trend of increasing median values with increasing stage.
However, only stage IV disease was significantly
different from both normal and stage | disease (Figure
6b).

Serum sFasL levels in breast cancer decreased with
increasing stage, with more advanced stages (II, 111 and
IV) significantly different from normal and stage |
(Figure 6c). With prostate cancer, sFasL levels
decreased significantly between normal and stages II, |1
and IV (Figure 6d). Similarly, serum cytochrome c
levels were significantly reduced between normal and
stages | through IV of breast cancer (Figure 6e) and
between normal and stages Il, Il and IV of prostate
cancer (Figure 6f). Thus, subjects with cancer have
higher anti-apoptotic factors (sFas) in circulation and
less proapoptotic factors (sFasL, cytochrome c) in
circulation. Also, the more advanced the cancer, the
larger the change in circulating levels.
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Table Il. Serum levels of apoptosis biomarkers in cancer

female NL BCA male NL PCA
n 70 66 40 38
Age (years)? - 62 + 14 - 66 +9
sFas (pg/ml)
meanzSD 35851918  5202+1732 | 5023+1309 6249+2324
median 3490 4831 5038 5587
range 1603-5877 2651-11990 | 3048-8026 3462-11580
U-test’ p < 0.001 p <0.05
sFasL (pg/ml)
meanzSD  94.4+20.1 75.3+£26.2 89.0£19.6 69.7£22.0
median 97.3 75.2 92.2 62.2
range 45.9-139.4  15.6-125.0 ;| 40.6-130.3 19.4-127.7
U-test” p < 0.0001 p < 0.0001
Cytochrome ¢ (pg/ml)
meanzSD 0.673+0.266 0.27+0.14 | 0.458+0.243 0.23%0.09
median 0.601 0.24 0.406 0.21
range 0.239-1.329 0.07-0.74 | 0.128-1.039 0.09-0.046
U-test” p < 0.0001 p < 0.0001

® Age in years * standard deviation. A subset of the normal female and male groups
were age- and gender-matched to the specific cancers.

® Mann Whitney U-test comparing serum values in breast and prostate cancer subjects
to age- and gender matched normal subjects.

DISCUSSION

Apoptosis, originally believed to be a process with only
negative effects, now is recognized to balance the
beneficial potential of eliminating damaged cells against
the pathological effects of deleterious cell death (e.g.
neurodegenerative disease) [27]. Failures in apoptosis
can contribute to the senescent cell phenotype as well as
rogue cell proliferation [28]. It has been shown that
apoptosis is an important cellular defense mechanism in
maintaining genetic stability, and centenarians who
have aged successfully possess cells that are more prone
to apoptosis [29]. The major age related disease leading
to mortality is cardiovascular disease. Studies have
shown that apoptotic cell death effect cardiac tissue, and
in addition, cells that avoid apoptosis participate in the
progression of atherosclerosis [30, 31]. Cancer, another
leading cause of mortality, arises from neoplastic
progression through avoidance of apoptosis [32]. In
addition, dysregulation of Fas/FasL mediated apoptosis

can contribute to the pathogenesis of pulmonary [33,
34] liver [35], and neoplastic [36] fibrosis.

Studies with mice having Fas/FasL mutations suggest
that that a major function of Fas-mediated apoptosis is
the elimination of activated immune cells from the
peripheral circulation [37]. Similarly, humans with
autoimmune  lymphoproliferative  syndrome have
mutations in Fas [38, 39]. Maintenance of Fas apoptosis
signaling is a crucial feature for successful immune
aging [40]. In young immune fit individuals, stimulation
of T cells leads to upregulation of Fas, FasL, and
Fas/FasL engagement-induced apoptosis signaling
causing cell death which eliminates the majority of T
cells that are activated in response to a stimulus, thereby
preventing the accumulation of autoreactive T cells. An
age-related impairment of Fas/FasL mediated apoptosis
is believed to contribute to compromised regulation of
the immune system and immunosenscence [28]. The
age related shift in favor of reduced apoptosis (higher
sFas with lower sFasL and total cytochrome c) may
contribute to reduced clearance of immune cells leading
to a state of chronic inflammation [27]. A chronic
inflammatory state may underlie a number of
pathologies including cancer [41], cardiovascular
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disease [42, 43], diabetes mellitus [44], frailty [45, 46],
osteoporosis [47], rheumatoid arthritis [48], and
cognitive disorders such as Alzheimers and Parkinson's
disease [49-51]. It is of note that the pro-inflammatory
marker interleukin-6 appears to be protective against
apoptosis [52-55], its serum levels are known to
increase with increasing age [56] and have an inverse
correlation with Fas-induced apoptosis [57].

In the immune system, Fas and FasL are involved in
down-regulation of immune reactions as well as in T cell-
mediated cytotoxicity [58]. In cancer, malignant cells
inhibit the expression of membrane-bound Fas and
express FasL which triggers tumor-infiltrating lympho-
cyte apoptotic cell death [59]. In contrast to their
membrane-bound forms, soluble sFas and sFasL exhibit
different patterns. The levels of sFas and sFasL have
been measured independently in separate studies in differ-

ent populations of normal subjects [60, 61] and subjects
with breast cancer [62-64] and prostate cancer [65, 66].
Similarly, serum cytochrome ¢ has been measured as a
marker of apoptotic cell death [19, 67] and in cancer [21,
68-70]. In general, serum Fas was elevated in cancer
patients while sFasL levels were elevated or reduced,
depending on the cancer group. Interpretation of
published results on serum cytochrome c are complicated
by the recent observation that cytochrome c exists in a
complex with leucine-rich alpha-2-glycoprotein-1 in
serum which alters immunoreactivity [20]. Thus, it is not
clear whether studies measuring cytochrome c directly in
serum are quantifying a free (unbound) pool or a pool
reflecting some combination of free and complexed
cytochrome c. In the current study, levels of 500 ng/ml
total cytochrome ¢ were measured on average in the
normal population, which is at least 10-fold higher then
published values [20, 71, 70].

40 — 25
d.
ma J20
S Q
— —
= 4150
2 20} =3
]
= -1n%}
= E
10F
Jos
ol : 0.0
00 04 08 12 1.6 20 24
CytC pg/ml
)s ytC pg 2s
C.
2.0F 12.0
—~
z 2
Sl Sk 4153
s | o <
Q.. o % quoo  RCED
6Ju &8 %0 % 105
B g -
o.sf oS0 o
| © 030 ]
0.0 : L . . 0.0

8
&
2
®

Figure 4. Serum total cytochrome c levels. The levels of total cytochrome c in 204 normal subjects
were determined as depicted in Figure 3. The frequency distribution of the values across the subjects was
analyzed (a). The levels of total cytochrome c in all subjects by gender was plotted (b). The sample
population was segregated by gender and the levels of serum cytochrome c as a function of donor age for

female (c) and male (d) subjects were plotted.
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Figure 5. Age and gender differences in serum sFas, sFasL
and total cytochrome c levels. The serum levels of the apoptotic
biomarkers were segregated by gender and by decade. Tukey
box and whiskers plots (female clear boxes, male shaded boxes)
of sFas (a), sFasL (b) and total cytochrome c (c) depicting the top,
bottom, and line through the middle of the box correspond to
the 75th percentile (top quartile), 25th percentile (bottom
quartile), and 50th percentile (median) respectively. The error
bar-like whiskers depict 1.5 x the interquartile range and the
solid circles represent outliers. Comparisons between genders
were performed conservatively by Mann Whitney U-test.

In a study of 204 clinically defined normal subjects,
serum levels of sFas increased while sFasL and total
cytochrome ¢ decreased with increasing subject age.

addition, the age-related elevation of sFas was
significantly higher, while total cytochrome ¢ was
significantly lower in males from their 40’s and 50’s
onward. This is the first report describing the
distribution of these multiple markers in a single, well-
defined normal population. The healthy normal group
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Figure 6. Serum markers of apoptosis and tumor stage.
Subjects with breast cancer (a, ¢, e), or prostate cancer (b, d, f)
were stratified by stage and the distribution of sFas (a, b),
sFasL (c, d) and cytochrome c (e, f) stratified by staging was
determined. The solid horzontal bars depict the median
values. For breast cancer, stage | tumor size (T) < 2 cm across
and cancer cells have not spread to axillary lymph nodes (N).
For stage Il, T < 2 cm across and the cancer has spread to the
lymph nodes under the arm (N positive) or Tis2to 5 cmand N
is negative. In stage lll, T > 5 cm or it has spread to other
lymph nodes or tissues near the breast. Stage IV is metastatic
cancer. The convention for prostate cancer staging was that in
stage |, cancer is found in the prostate only. In stage Il, cancer
is more advanced than in stage |, but has not spread outside
the prostate. In stage Ill, cancer has spread beyond the outer
layer of the prostate to nearby tissues. Stage IV is
characterized by distant metastasis. Comparison between
group median values was performed by Mann Whitney t-test,
where * = p < 0.05, ** = p < 0.005, *** = p < 0.0001. Numbers
in parenthesis indicate number of subjects in each group.
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loss of homeostasis and pathologies traditionally
referred to as age-related diseases (e.g. - cardiovascular
disease, cancer, diabetes, Alzheimer's, osteoporosis) can
be considered as manifestations of fast aging [72].
Given the correlations observed between donor age and
the apoptosis markers in the normal healthy group, the
expansion of the study group to include age-related
diseases (whose serum values would reflect fast aging)
might be expected to broaden the differences in these
serum markers.

The observed shift in the balance to decreased apoptosis
may contribute to age-associated increases in diseases
characterized by failure of normal apoptosis (e.g. —
cancer, arthritis, cardiovascular disease). Indeed, in both
breast and prostate cancer, correlative data on serum
sFas, sFasL and total cytochrome c that were consistent
with a shift toward decreasing apoptosis were also
observed in the current study. Finally, many
observations indicate that women have a longer life
expectancy than men, that mortality and morbidity are
higher in men than in women and this gender difference
is constant in cardiovascular disease, cancer and
dementia [73]. The observed gender differences in
apoptosis markers - higher sFas and reduced sFasL and
total cytochrome ¢ — which are of indicative of
dysregulated apoptosis would be consistent with the
increased mortality and morbidity in men.

METHODS

Subjects. Approval for the study protocol was acquired
from the local institutional review board and informed
consent was obtained from all patients. Sera from
clinically defined normal patients were obtained from a
commercial serum bank (SeraCare Life Sciences Inc.,
Oceanside, CA) as well as from the Johns Hopkins
Bayview Medical Center General Clinical Research
Center (JHBMC). The JHBMC normal group was
obtained from an existing serum bank using samples
from which all patient identifiers were removed. For
this study, inclusion criteria as a normal serum donor
included measures within the normal range for fasting
glucose (< 100 mg/dl), TSH (0.5 - 2.1 mlU/mL), BMI
(20 - 25 kg/m?) as well as a physical assessment by a
physician. Exclusionary criteria included a previous
history of hypertension, heart disease, diabetes mellitus,
renal or hepatic dysfunction, cancer, or any chronic
inflammatory condition (e.g., rheumatoid arthritis). Sera
from a group of 104 cancer subjects consisting of 66
females with breast cancer and 38 males with prostate
cancer were obtained from a serum repository. Blood
was drawn at time of diagnosis, prior to initiation of
treatment.

Serum biochemical measures. Blood samples were
drawn in the morning after an overnight fast. Serum
biochemical measurements included sFas and sFasL by
sandwich enzyme immunoassay technique (R&D,
Systems, Minneapolis, MN). The assay performance
characteristics in the laboratory for sFas were a
sensitivity of 22.4 pg/ml, an intra-assay coefficient of
variance of 2.48% and an inter-assay coefficient of
variance of 6.06% and for sFasL were a sensitivity of
7.2 pg/ml, an intra-assay coefficient of variance of
3.64% and an inter-assay coefficient of variance of
6.87%.

Total cytochrome ¢ assay. Cytochrome ¢ protein stan-
dard (equine heart) was obtained from EMD Chemicals
(Gibbstown, NJ). A mouse monoclonal anti-cytochrome
¢ unconjugated antibody was obtained from Invitrogen
(Carlsbad, CA). Goat anti-mouse 1gG conjugated to
horseradish peroxidase was obtained from Kirkgaard &
Perry (Gaithersburg, MD). NUPAGE 4-12 % Bis —Tris
1.5 mm X 15 well polyacrylamide gels, NuPAGE
antioxidant and See blue pre-stained standards were
obtained from Invitrogen. Super Signal West Dura
Extended Duration Substrate was obtained from
Thermo Fisher Scientific Inc. (Waltham, MA).

Serum samples, after being reduced with 10 mM DTT
and diluted in gel sample buffer (1:10), were resolved
by Nu PAGE 4-12% Bis Tris gel. 8ul of diluted and
reduced sample was loaded onto the gel for each
sample. Purified equine heart cytochrome ¢ was used to
generate a standard curve at 20, 10, 5, 2, and 1 ng/well.
After electrophoresis, samples were transferred to
nitrocellulose membrane following standard conditions.
After a 1-h incubation in blocking solution (TBS-
Tween+5% non fat powdered milk) at room
temperature on rotary shaker, a mouse monoclonal anti-
cytochrome c¢ antibody was added at a dilution of 1:
2000 and incubated over night at 4 ¢ on a rotary shaker.
The nitrocellulose membrane was washed in TBS-
Tween three times for 5 minutes each and then goat
anti-mouse 1gG conjugated to horseradish peroxidase
diluted to 1:10,000 in TBS-Tween was added and
incubated for 2 hrs at room temperature. Following
removal of second antibody solution, the membrane was
washed three times with TBS -Tween and exposed to
the chemiluminiscent enzyme substrate for 5 minutes.
Signals were captured, digitized and analyzed using a
Kodak GEL Logic 2200 Imaging System (Carestream
Health Inc., Rochester, NY).

Statistical analysis. Comparisons between groups were
performed conservatively using the Mann Whitney
nonparametric test. The association of sFas, sFasL or
cytochrome c with donor age was analyzed using the
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conservative Spearman nonparametric correlation test.
All statistical calculations were carried out using
GraphPad Prism version 5.00 for MacOS (GraphPad
Software, San Diego CA).
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