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p53, sex, and aging: lessons from the fruit fly
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The p53 tumor suppressor gene is activated by
numerous cellular stressors, including hypoxia and
DNA damage and may induce cell cycle arrest or
apoptosis depending on the extent of the damage [1].
This capacity has earned p53 the title of ‘guardian of the
genome’ [2] and in 1993, p53 was voted ‘Molecule of
the Year’ by Science magazine [3]. Since then, the
extensive study of p53 at both structural and functional
levels has provided greater insight into its role in cancer
biology [4]. The fact that p53 functions to suppress
cancer means that it is essential. However, recent
studies in a broad spectrum of model organisms,
including mice, have shown that not all functions of p53
are beneficial to a long healthspan [5].

p53

One of the first indications that p53 may have a ‘dark
side’ was the observation that even a slight constitutive
hyper-activation of p53 results in premature aging
phenotypes in rodents [6,7]. While adult mice that
express a hypermorphic truncated p53 allele show a
dramatic reduction in incidence of cancer, they
nevertheless have significantly shortened life spans and
show many hallmarks of early aging, including loss of
body mass and reduced stress resistance [7]. A severe
reduction in p53 activity, on the other hand, causes
rampant tumorigenesis. Therefore, p53 may provide an

example of antagonistic pleiotropy, where expression in
early life is beneficial in preventing cancers, but higher
levels of expression can result in, among other effects,
detrimental reductions in stem cell pools that maintain
organ homeostasis [8].

Recently, studies in Drosophila melanogaster, have
greatly improved our understanding of the role of p53 in
modulating the aging process.  Using tissue-specific
drivers and dominant-negative {DN) p53 alleles, a
reduction in p53 function in adult neurons was shown to
have a beneficial effect on longevity [9]. Interestingly,
life spans of flies that have reduced p53 function in
adult neuronal cells cannot be further extended by
dietary restriction (DR) [9], indicating that a decrease in
p53 activity may be a part of the DR lifespan-extending
pathway in flies. Moreover, dSir2, a gene previously
implicated in mediating response to dietary restriction
[10], interacts directly with and deacetylates p53,
inhibiting its function as a transcriptional activator [11].
One consequence of the lowered p53 activity in adult
neuronal cells is a reduction in the secretion of
Drosophila insulin-like peptide 2 (dILP2) without a
similar reduction in the secretion of other dILPs [12].
Thus, in addition to its vital role in safeguarding the
genome, p53 may also tie together the responses
generated by DR and the insulin/IGF-1 signaling
pathway.
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Sex

New insights into the roles that p53 plays in animal
aging are provided by Waskar et al. in this issue of
Aging. Following up on previous studies that have
focused on drawing conclusions about general functions
of p53 in aging and senescence, Waskar et al. present an
examination of the specific roles p53 plays in different
sexes and at different developmental stages. Provoca-
tively, their results suggest that in addition to the
developmental antagonistic pleiotropy characteristic of
the role of p53 as a pro-apoptotic gene [summarized in
14 and 15], p53 may also function in a sexually
antagonistic manner, limiting the life span of adult
female flies while promoting the longevity of adult
males.

Evidence from rodent studies suggests that increasing
p53 function using a hypermorphic p53 allele speeds up
aging in mature animals by depleting the pool of stem
cells that are necessary to maintain essential functions
[6]. Furthermore, manipulations of p53 in Drosophila
life span studies have primarily been concerned with the
effects of reducing p53 function using DN p53 alleles
[9, 11, 12]. Reports of wild type p53 over-expression
have been limited to adults and only in neuronal tissue,
where it was shown to have little effect on longevity
[9]. What effect a tissue-general over-expression of
wild type p53 might have in a largely post-mitotic
organism has remained an open question.

Weskar et al. make a significant contribution by taking
advantage of the Drosophila Gene-Switch system that
puts transcriptional control of a transgene under temporal
control [16, 17]. By inducing the Dmp53 transgene in a
tissue general manner in adults, the authors show that in
female flies, high levels of p53 function results in a
reduction of life span. Accordingly, the expression of a
DN p53 in adult females extends life span, and
hypomorphic and amorphic mutations of the endogenous
p53 result in life span extension and moderate stress
resistance. Surprisingly, in some cases, the authors find
the opposite to be true in males, with increased p53 levels
in adults resulting in longer life spans.

These new findings from Weskar et al. are fascinating,
providing “food for thought’ at several levels. For one
thing, their findings hint that male and female longevity
may be limited by different physiological processes.
The elucidation of the mechanisms that underlie the
sexual antagonistic pleiotropy demonstrated in this
study will be of great interest both to studies of life span
determination and evolution of antagonistic functions
within a single gene.

Aging

Moderation has been a hallmark of the longevity field,
from hormetic effects of toxins [reviewed in 19], to
dietary restriction [reviewed in 20], to mitochondrial
gene manipulations [18, 21]. Weskar et al. show that
the positive effects of p53 on life span are no different.
In addition to temporal control, the Gene-Switch system
allows for control of the magnitude of transgene
expression. Previous reports of life extension using p53
manipulations in flies have focused on adults where the
pro-apoptotic effects of p53 over-expression do not
interfere with normal development [9]. In the current
study, the authors find that even during development,
moderate over-expression of p53 can extend life span.
Moreover, unlike adults that show sexual antagonistic
pleiotropy, interventions that extend life span in
juveniles appear to be beneficial for both sexes.

The slight elevation in p53 may help maintain genomic
fidelity during early life, resulting in healthier, longer-
lived adults, at the cost of developmental speed and
elevated energy requirements. In addition, increased
p53 activity during development may have resulted in a
decrease in body mass/size of the animals. Although
the relationship between body size and longevity is
complicated [22], this may be worthy of follow-up
studies. In addition, an important question that has
emerged from this study is whether the beneficial
effects of moderate p53 over-expression during
developmental stages is the result of a mechanism that
is distinct from the genome protective effects of higher
p53 levels.

It has also not escaped our attention that p53 regulates
mitochondrial electron transport chain (ETC) activity
[23]. Our own interest in the relationship between ETC
activity and longevity leads us to speculate that
alterations in energy metabolism may be important in
p53-mediated longevity. Interestingly, we have
observed stronger effects on female life span in our
ETC studies [21], though, it is not clear how (or if) this
relates to the sexual antagonistic pleiotropy seen by
Waskar et al. with p53.

A final thought worthy of consideration is that it is at
least possible that the effects observed with neuronal
expression of DN p53 transgenes could be due to the
transgenic p53 having effects distinct from inhibition of
endogenous p53. The DN p53 has either a mutation in
the DNA binding domain, or it is a truncated version of
the protein, but these can presumably still carry out
some of the functions of p53, such as localization to the
mitochondria, or direct regulation of autophagy. In addi-
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tion, while the adult fly is usually referred to as a ‘post-
mitotic’ system, there are dividing stem cells and
progeny cells in the gonad, gut, and malphigian tubule
[24-28]. Changes in p53 activity could affect the
maintenance of these cells and consequently, the life
span of the entire animal.
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