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Circadian clock-coordinated hepatic lipid metabolism: only
transcriptional regulation?
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Abstract: By regulating the metabolism of fatty acids, carbohydrates, and xenobiotic, the mammalian circadian clock plays
a fundamental role on the liver physiology. At present, it is supposed that the circadian clock regulates metabolism mostly
by regulating the expression of liver enzymes at the transcriptional level. However, recent evidences suggest that some
signaling pathways synchronized by the circadian clock can also influence metabolism at a post-transcriptional level. In this
context, we have recently shown that the circadian clock synchronizes the rhythmic activation of the IRE1la pathway in the
endoplasmic reticulum. The absence of circadian clock perturbs this secondary clock, provokes deregulation of endoplasmic
reticulum-localized enzymes, and leads to impaired lipid metabolism. We will describe here the additional pathways
synchronized by the clock and discussed the influence of the circadian clock-controlled feeding rhythm on them.

Circadian clocks are operative in virtually all light- of animal physiology. During the past few years,
sensitive organisms, including cyanobacteria, fungi, analysis of animal transcriptomes with the DNA
plants, protozoans and metazoans. These timing devices microarray technology showed that many aspects of
allow their possessors to adapt their physiological needs physiology are directly controlled by the circadian clock
to the time of day in an anticipatory way. In mammals, through control of the expression of enzymes and
circadian  pacemakers regulate many systemic regulators involved in these physiological processes
processes, such as sleep-wake cycles, body temperature, [5,6]. Although the mechanisms involved in these
heartbeat, and many physiological outputs conducted by regulations are not yet understood in detail, it is likely
peripheral organs, such as liver, kidney and the that transcription factors whose expression is controlled
digestive tract [1]. On the basis of surgical ablation and by the circadian clock are involved [7]. Based on these
transplantation experiments, it was established that the circadian transcriptome profiling studies it is commonly
suprachiasmatic nucleus (SCN) in the hypothalamus thought that circadian metabolism is mainly the
coordinates most of these daily rhythms [2], probably consequence of circadian transcription and possible
through both synaptic connections and humoral signals effects of circadian clock-controlled post-transcriptional
[3]. Interestingly, self-sustained and cell-autonomous regulatory mechanisms have been largely neglected.
molecular oscillators do not only exist in pacemaker

cells such as SCN neurons, but are also operative in Interestingly, most of the enzymes involved in liver
most peripheral, non-neuronal cell types [4]. These metabolism are localized in the membrane of the
peripheral oscillators participate in the circadian control endoplasmic reticulum (ER) of hepatocytes. The ER is a
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complex luminal network in which protein synthesis,
maturation, folding, and transport take place. It has been
previously shown that the ER of hepatocytes exhibits a
circadian dilatation which is a sign of ER stress [8].
This ER stress triggers the unfolded protein response
(UPR) which is a conserved adaptative response to cope
with the accumulation of unfolded proteins in this
organelle. When unfolded proteins accumulate in ER,
three pathways are activated, IREla, PERK and ATF®6,
which lead to the nuclear translocation of the
transcription factors XBP1, ATF4 and ATFS,
respectively. These transcription factors activate in turn
the expression of genes coding for proteins involved in
peptide folding and degradation to limit the
accumulation of unfolded proteins [9]. In this context,
we have recently described the posttranslational
regulation of liver enzymes through a circadian clock-
coordinated 12-hours period rhythmic activation of the
IREla pathway [10]. The observed rhythmic activation
of the IRELla pathway leads to the expression with a 12-
hours period of the XBP1-regulated genes that are
included in the 12-hours period genes described
recently in mouse liver [11]. Persistent activation of the
IREla pathway in circadian clock deficient Cryl/Cry2
ko mice induced the downregulation of ER membrane
localized enzymes, including HMGCR and SCD1,
leading to a perturbed lipid metabolism in the liver of
this mice. The decreased expression of these enzymes
could be caused by activation of the ER Associated
Degradation (ERAD), a process involved in the
elimination of unfolded proteins inside the ER [12]
regulated by the IRE1a-XBP1 pathway [13], which has
been shown to induce the degradation of HMGCR and
SCD1. In addition, IREla is a ribonuclease that can
also induce endonucleolytic decay of many ER-
localized mRNA including Hmgcr mRNA [14,15].
These two functions could contribute in parallel to the
regulation of lipid metabolism by ER stress. Elsewhere,
the IREla-XBP1 pathway controls also lipid metabo-
lism through direct transcriptional regulation of the
genes Scdl, Dgat2 and Acc2 involved in lipogenesis. As
a consequence, liver-specific deletion of the Xpbl gene
resulted in a dramatic reduction of plasma lipids [16].
Finally, it has been shown that ER stress induces the
degradation of the apolipoprotein ApoB100 [17,18] and
then blocks VLDL secretion [19], which might be
responsible for the fat accumulation in the liver in
tunicamycin-injected mice [20].

Interestingly, IRE1a activation has been recently linked
to induction of autophagy through activation of the Jun-
Kinase pathway [21]. In addition, a genomic screen in
fly cells demonstrated that knocking down genes
involved in protein folding inside the ER or in the UPR,

including Xbp1l, increases basal autophagy levels [22].
Autophagy is a survival pathway classically associated
with adaptation to nutrient starvation [23] and, as UPR,
autophagy presented a diurnal rhythm of activation in
rodent liver [24,25]. This is of particular interest if we
consider the fact that autophagy is linked to lipid
metabolism through regulation of intracellular lipid
stores [26]. As a consequence, mice with an adipose
tissue-specific deletion of the Atg7 gene, an important
regulator of autophagy, present an important defect in
lipid storage [27,28]. IREla-dependent rhythmic
regulation of autophagy could then participates to the
circadian clock-coordinated lipid metabolism in
mammals.

The disturbed metabolism observed in Cryl/Cry2 ko
mice is probably responsible of the aberrant activation
of the Sterol Responsive Element Binding Protein
(SREBP) transcription factor, an ER membrane bond
protein that, in low sterol conditions, translocates to the
Golgi to be cleaved and released in order to migrate in
the nucleus where it activates genes coding for enzymes
involved in cholesterol and fatty acid metabolism [29].
It has been shown that the ER stress induced activation
of SREBP1 and SREBP2 [30,31] correlates with the
depletion of INSIG regulatory proteins probably
through a decreased synthesis of the protein [32,33].
Interestingly, the circadian clock influences also the
activation of the SREBP pathway through the control of
Insig2 mRNA expression [34]. Both transcriptional and
post-transcriptional circadian clock-coordinated events
seem to be involved in the rhythmic activation of the
SREBP pathway.

As summarised in Figure 1, in addition to their rhythmic
activation, all these pathways have in common the fact
that they are regulated by feeding-fasting events.
However, this feeding rhythm, like most behaviour, is
also controlled by the circadian clock. To discriminate
the genes dependant or not on a functional local
circadian oscillator, this local clock has been inactivated
in mouse liver. This strategy reveals that the expression
of approximately 90 % of the rhythmic genes is
dependent on a functional circadian clock and only 10
% is dependent on systemic cues [35]. However, the
influence of feeding on rhythmic gene expression has
been evaluated by a recent study which discriminates
between gene induced by feeding and fasting. As
expected, food-induced and food-repressed genes
present a rhythmic expression which is shifted in
response to a change in the feeding schedule [36]. More
interestingly, this shift in the feeding schedule is able to
induce rhythmic expression of food-regulated genes in
the liver of Cry1/Cry2 ko mice. These two studies raise
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the question of the differential influence of the
molecular circadian oscillator and systemic cues on
rhythmic gene expression: if these two signals can
independently drive rhythmic gene expression, the
circadian clock is able to fine-tune and modify feeding
cues [34,36], whereas feeding cues can synchronize the
molecular oscillator in peripheral organs [37].

However, feeding and food-regulated signals, as for
example food regulated hormones like insulin, glucagon
or leptin, did not represent the only circadian clock-
regulated cues that can influence lipid metabolism. For
example, the pituitary-secreted growth hormone (GH)
has been shown to influence lipid metabolism in mouse
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liver. Long term excess GH secretion produces high
serum triglyceride levels through stimulated lipolysis
[38], whereas inhibition of GH signaling induced
perturbed lipid metabolism resulting in liver steatosis
[39], probably caused by reduced activation of HNF3p3
[40]. Moreover, the ultradian secretion patterns of GH are
directly responsible for the sexually dimorphic expres-
sion of several hepatic enzymes involved in steroids and
fatty acids metabolism [41]. Interestingly, this
dimorphism is impaired in Cryl/Cry2 ko mice, with
males exhibiting a feminized liver likely because of
altered ultradian GH secretion in absence of a functional
circadian clock [42].
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Figure 1. Schematic representation of the signalling pathways post-transcriptionally
regulated by the circadian clock and/or rhythmic feeding cues in mouse liver.
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During aging, the circadian system becomes much less
responsive to entrainment by light [43,44], and displays
loss of temporal precision and robustness [45-47]. Such
alterations of the circadian clock likely drive attenuation
of the diurnal rhythm in circulating leptin [48]. Pulsatile
GH secretion is also dramatically impaired in elderly
subjects [49-51], leading to modifications in GH-
dependent liver metabolism that resemble those
observed in clock-deficient animals [42,52]. Interesting-
ly, the various UPR pathways also decline in the liver
during aging [53], as well as autophagy [54]. In
summary, many aspects of lipid metabolism that are
regulated by the circadian clock exhibit profound
changes when age increases, although the liver
circadian oscillator appears preserved in aged rats [55].
These changes could thus at least partly originate from
alterations of the network constituted of the central
clock and other peripheral oscillators. In this respect, it
is worth noting that mice bearing mutated alleles of the
circadian genes Clock and Bmall display signs of
premature aging [56,57]. The complexity of systemic
cues influencing rhythmic gene expression has thus
been rising during the last decade and defining the
influence of these different signals on rhythmic gene
expression will be thus an exciting challenge for the
following years.
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