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Cardiovascular disease is the leading cause of death in
the United States, accounting for nearly one third of all
mortalities [9]. While lifestyle modifications, drug
development, and surgical technologies have increased
the average life expectancy of humans, the risk and
rates of heart disease continue to grow as the population
ages. The process of aging causes unique physiological,
histological, and biochemical changes in cardiac tissue.
For example, aging cardiac myocytes are incapable of
proliferation and cannot be reprogrammed transcrip-
tionally in response to changes in workload [7]. Age-
associated conditions such as buildup of reactive
oxygen species, mechanical dysfunction, or other forms
of trauma, have been linked to the development of
hypertrophy and other cardiac pathologies [6, 14].
Therefore, development of drugs that target age-
dependent signaling pathways may provide promising
therapeutic strategies for the treatment of heart disease.

mIGF-1 protects the heart through crosstalk with
SIRT1

A study by Vinciguerra et al. published in the January
2010 issue of Aging furnishes new and important
information about the cellular mechanisms leading to
the pathogenesis of heart failure [22]. They propose a

cardio-protective link between locally acting insulin-
like growth factor (mIGF-1) and the NAD+-dependent
deacetylase SIRT1. Typically, it is thought that the
highly conserved IGF-1 and sirtuin signaling pathways
play antagonizing roles in mammalian physiology. IGF-
1 acts primarily as a growth hormone and signaling
factor. Mice lacking GH/IGF-I signaling and IGF-1
receptor heterozygous knockout mice have longer
lifespans, and overexpression of a hormone known to
inhibit insulin/IGF-1 signaling extends lifespan [5, 18].
However, the complex structure of the Igf-1 gene gives
rise to multiple peptide isoforms that have contrasting
functions [21]. Notably, the mIGF-1 isoform, which is
expressed at high levels in neonatal tissues and adult
liver, promotes regenerative properties in damaged
heart tissue [21].

SIRT1, the mammalian orthologue of yeast Sir2, is a
highly conserved NAD+-dependant protein deacetylases
that has emerged as an important regulator of aging and
metabolic disease [2]. SIRT1 and its family members
are reported to promote longevity in different model
organisms, including yeast, worm and fly [2, 13]. The
mammalian SIRT1 protein is primarily nuclear, and its
functions have been tied to metabolism, cell survival
and stress response [4]. The full-body SIRT1 knockout
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mouse displays ventricular adult heart abnormalities
[10], but a severe developmental phenotype, together
with high neonatal mortality rates make use of it
difficult to study the physiological role of SIRT1 in the
adult heart. Interestingly, high levels of SIRT1
expression (>9-fold) in the heart causes hypertrophy,
loss of cardiac function, and elevated apoptosis [1]. On
the other hand, moderate overexpression (2.5 to 7-fold)
of SIRT1 in transgenic mouse hearts protects against
oxidative stress, and results in increased expression of
antioxidants [1]. As well, SIRT1 expression is increased
in the hypertrophic heart of rodents and monkeys,
though its functional relevance remains unclear [19].

Vinciguerra et al. hypothesize that although SIRT1 and
circulating IGF-1 play opposite roles, the local mIGF-1

isoform displays a novel cross-talk signaling program
with SIRT1, which results in cardiomyocite protection
from hypertrophic and oxidative stress. They show that
mIGF-1-mediated activation of SIRT1 induces
expression of the protective signaling molecules UCP1,
adiponectin, and MT2 [22]. They suggest that SIRT1
activation in the heart may also elicit protection from
hypertrophy by restoring expression of fetal a-myosin
heavy chain 7. The authors note an important distinction
between circulating IGF-1 and mIGF-1. Typically,
circulating IGF-1 activates PI3BK/AKT/mTor and MAP
kinase pathways, whereas mIGF-1 signals through
PDK1 and SGK1 [22]. They conclude that the divergent
signaling mechanisms between the two IGF-1 isoforms
may account for their opposing effects in heart tissue
(Figure 1).
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Figure 1. Model depicting the role of mIGF-1 regulation in cardiomyocytes.

Table 1: Mammalian Sirtuin cardiac phenotypes

Sirtuin Location Activity

Transgenic Mouse Phenotype
KO — Ventricular abnormalities
Tg — Overexpression (>9-fold) — Cardiac hypertrophy
Tg — Overexpression (2.5 to 7-fold) — Protection from oxidative stress
— Increased expression of antioxidants

SIRT1 Nucleus

NAD-dependent deacetylase

KO - Cardiac hypertrophy
Tg — Overexpression — Cardio-protective

SIRT 3 | Mitochondria/nucleus NAD-dependent deacetylase

NAD-dependent deacetylase/

SIRT 7 Not established - - !
ribosomal biogenesis

KO - Cardiac hypertrophy
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Other sirtuins benefit the heart

Recently, two additional sirtuin family members—
SIRT3 and SIRT7--have been shown to have beneficial
functions in the heart (Table 1), [17, 20]. SIRT3, which
consists of two isoforms (=28 kDa and ~44 kDa) was
initially identified as a mitochondrial protein, but has
since been identified in the nucleus as well [15, 16].
Similar to SIRT1, SIRT3 uses NAD+ as a cofactor for
the deacetylation of target substrates [2, 12]. Cellular
energy status, reflected in NAD+ levels and
NAD+/NADH ratios, are thought to influence SIRT1
and SIRT3 expression and activity [8]. For example,
mild stress conditions, such as mechanical stress to the
heart and calorie restriction (CR), are presumed to
reduce NADH levels, thus increasing the NAD+/NADH
ratio. These alterations in cellular energy provide fuel to
drive induction of SIRT3 during physiologic and mild
hypertrophy.

SIRT3-deficient mice show signs of cardiac
hypertrophy and interstitial fibrosis at 8 weeks of age,
while SIRT3 transgenic overexpressing mice are
protected from application of hypertrophic stimuli [17].
SIRT3 blocks the cardiac hypertrophic response through
activation of Foxo-dependent antioxidants, manganese
superoxide dismutase (MnSOD) and catalase, as well as
suppressing ROS-mediated Ras activation and the
downstream MAPK/ERK and PI3K/Akt signaling
pathways [17]. SIRT1 and SIRT3 appear to share
similar ROS-accumulating end-point targets that cause
cardiac hypertrophy. Use and development of sirtuin-
specific activators and inhibitors may help further
dissect the collaborative functions of SIRT1 and SIRT3
in the heart.

Less is known about the physiological role of SIRT7 in
the heart. SIRT7 is a nuclear protein that associates with
rDNA and interacts with RNA [3]. It is not certain
whether SIRT7 exhibits NAD+-dependent deacetylase
activity, but reports suggest that it does respond to
metabolic conditions by stimulating ribosomal
biogenesis in dividing cells [11]. SIRT7-deficient mice
develop heart hypertrophy and inflammatory cardio-
myopathy, which is characterized by extensive fibrosis
[20]. SIRT7 appears to regulate heart cell death and
damage by inhibiting p53, Ras, and Akt signaling
pathways [20]. The molecular details explaining how
SIRTY7 targets these pathways remains unclear.

Conclusions
Sirtuins are longevity factors that also appear to regulate

critical cardio-protective pathways in the mammalian
heart. To date, three family members—SIRT1, SIRT3,

and SIRT7—have been shown to block stress-induced
cardiac hypertrophy by impinging upon ROS
generation. It is interesting that knockout mice for each
sirtuin isotype exhibit heart abnormalities, while
transgenic overexpression of all three provides protec-
tion from cardiac hypertrophy. More investigation using
conditional knockout models and specific activators is
needed to elucidate the distinct molecular functions of
each sirtuin. These studies will have profound
implications, not only for the management of heart
failure, but also for other stress-associated diseases.
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