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Abstract

The editorial board of Aging reviews research papers published in 2009,
which they believe have or will have a significant impact on aging research.
Among many others, the topics include genes that accelerate aging or in
contrast promote longevity in model organisms, DNA damage responses
and telomeres, molecular mechanisms of life span extension by calorie
restriction and pharmacologic interventions into aging. The emerging
message in 2009 is that aging is not random but determined by a
genetically-regulated longevity network and can be decelerated both
genetically and pharmacologically.
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Telomeres

The 2009 Nobel Prize in Physiology or Medicine was
awarded to Elizabeth Blackburn, Carol Greider and Jack
Szostak for their contributions to our understanding of
how the ends of eukaryotic chromosomes, telomeres,
are maintained by a specialized reverse transcriptase,
telomerase. This award is the closest Nobel Prize to
date related to aging. Of course, the major significance
of the work relates to basic cell biology and cancer,
rather than aging research. In fact, whereas telomere
shortening explains the Hayflick limit (replicative
senescence) in human cells, it cannot explain the
difference in longevity between mice and men. But
there may be other links between telomeres and aging.
In 2009, several publications by Epel, Blackburn and
co-workers provide a new link between telomere length
and age-related diseases. As published in the first issue
of Aging, the rate of telomere shortening in peripheral
leukocytes predicts mortality from cardiovascular
disease in elderly men [1]. Even more intriguingly,
pessimism correlates with short leukocyte telomeres and
elevated interleukin (IL)-6 in post-menopausal women
[2]. The cause-and-effect relationship between telomere
length and these physiological endpoints is unknown, but
several non-mutually exclusive explanations can be
proposed. Rapid telomere shortening may indicate a
cellular hyper-activation, hyper-proliferation and/or
hyper-secretory phenotypes often associated with cellular
senescence, stem cell exhaustion and diseases of aging.

In agreement with these possibilities, telomere length was
shown to regulate the expression of interferon-stimulated
gene 15 (ISG15). Short-telomeres up-regulated 1SG15
independent of DNA damage signaling. This finding
demonstrated for the first time that an endogenous human
gene can be regulated by telomere length prior to the
onset of telomere dysfunction and DNA damage signals.
It was suggested that the upregulation of 1SG15 by
telomere shortening may contribute to the chronic
inflammation associated with human aging [3]. Pertinent
to this idea, also in 2009, the secretion of inflammatory
cytokines such as IL-6 and IL-8 by senescent cells,
whether made senescent by dysfunctional telomeres or
DNA damage, was shown to be suppressed by two
micro-RNAs (miR-146a and 146b) [4]. It was proposed
that these micro-RNAs modulate inflammatory responses
by affecting signal transduction pathways that contribute
to a larger senescence associated secretory phenotype. It
will be of interest to know whether miR-146a/b also
suppresses ISG15 expression, and if this effect is
influenced by telomere status.

It was also demonstrated that dysfunction of a telomere-
binding protein is sufficient to produce severe telomeric

damage in the absence of telomere shortening, resulting
in premature tissue degeneration and development of
neoplastic lesions [5]. New insight has been gained in
the understanding of how telomeres are maintained and
how the processes of DNA repair occur in telomeres.
For example, it appears that the guardians of the
genome, the RecQ helicases, actively participate in this
repair process [6].

Damaged telomeres were also found to be the major
factor contributing to the wide variability in the
amount of DNA damage signaling in human tumor cell
lines, findings that may help clarify the relative
contributions of non-telomeric DNA double-strand
breaks and damaged telomeres to levels of genomic
instability [7].

DNA damage response and aging

In 2009, it was demonstrated that the persistent (but not
transient) DNA damage response (DDR) associated
with senescent cells is essential for their ability to
express and secrete inflammatory cytokines [8]. Cell
surface-bound IL-1alpha is essential for the senescence-
associated secretion of IL-6 and IL-8, 2 proinflam-
matory cytokines, reinforcing the senescence phenotype

[9].

Both the initiation and maintenance of cytokine
secretion required the DDR proteins ATM, NBS1 and
CHKZ2, but not p53. ATM was also essential for IL-6
secretion during oncogene-induced senescence and by
damaged cells that bypass senescence. It was proposed
that this activity of the DDR allows senescent cells to
communicate their compromised state to the
surrounding tissue [8]. In addition, a DDR may occur
in senescent cells even in the absence of detectable
DNA damage [10]. This pseudo-DDR is a marker of
cellular hyperactivation and is inhibited by rapamycin
[10], a clinically approved drug that decelerates cellular
senescence [11]. Thus, persistent DDR signaling,
regardless of DNA damage, may be a part of the
senescent phenotype.

It was shown that longevity extension mutations in the
yeast SCH9, the yeast homolog of the conserved pro-
aging gene S6K (Ribosomal Protein S6 Kinase), caused
a major reduction in age-dependent DNA damage by
lowering the activity of error-prone DNA repair genes
[12].

Also, age-dependent deterioration of nuclear pore
complexes causes an increase in nuclear permeability
and the leaking of cytoplasmic proteins into the nucleus
in postmitotic cells [13].
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The ability to respond to stress decreases with age.
Stress-responding factors which regulate transcription
can influence longetivity. In 2009, Westerheide et al
demonstrated that stress-induced regulation of heat
shock factor 1 (HSF-1) by the deacetylase SIRT1
(sirtuin 1) may play a role in the regulation of life span
[14]. Defining the targets of sirtuins may help to
understand the importance of transcriptional regulation
in age-related diseases.

An intriguing possibility is that the response of the cells
to certain types of DNA damage (e.g. DNA breaks)
results in epigenetic changes that alter gene expression
[15]. These changes do occur in mammals and it will
be interesting to test whether these epigenetic changes
in response to DNA damage are associated with, or can
actually cause aging.

Mitochondria, oxidative stress and aging

On the other hand, the free radical theory, which posits
that aging is caused by an accumulation of oxidative
damage, was critically questioned in 2009. First,
overexpression of major antioxidant enzymes, which
decrease free radicals, did not extend the lifespan of
mice [16]. Second, deletion of mitochondrial
superoxide dismutase (Sod-2) extended life span in
Caenorhabditis elegans [17]. Third, life span extension
by dietary restriction was not linked to protection
against somatic DNA damage in Drosophila
melanogaster [18]. Fourth, Sod-2 haploinsufficiency
did not accelerate murine aging, even in mice with
dysfunctional telomeres [19]. In addition it was
demonstrated that the reduced energy metabolism and
the increased oxidative stress in the mitochondria of
young Mclk1+/- mice results in an almost complete
protection from the age-dependent loss of mitochondrial
function. Moreover, this altered mitochondrial condition
is linked to a significant attenuation of the rate of
development of oxidative biomarkers of aging. Thus,
this study indicates that mitochondrial oxidative stress
is not causal to aging [20]. It was reported that RNAI of
five genes encoding components of mitochondrial
respiratory complexes 1, I, IV, and V leads to
increased life span in flies. Long-lived flies with
reduced expression of electron transport chain (ETC)
genes do not consistently show reduced assembly of
respiratory complexes or reduced ATP levels. In
addition, extended longevity is not consistently
correlated with increased resistance to the free-radical
generator paraquat [21].

These results are in agreement with previous papers
showing that antioxidants overexpression causes minor
effects in life span extension in yeast, flies, and mice

compared to those caused by mutations in signal
transduction genes. It is likely that increase protection
against superoxide must be accompanied by a number
of other changes to be effective in life span extension.
For instance, LON, a AAA protease located in the mito-
chondrial ~ matrix, increases stress tolerance,
mitochondrial oxygen consumption, while decreasing
oxidative damage of proteins in the fungal aging model
Podospora anserine [22]. In the same model organism,
deletion of a gene encoding a O-methyltransferase,
which decrease levels of reactive oxygen species, leads
to a decreased lifespan [23].

Calorie restriction (CR)

Caloric restriction (CR) without malnutrition delays
aging and extends life span in diverse species; however,
its effect in primates had not been clearly established.
In 2009, a 20-year longitudinal study of adult-onset CR
in rhesus monkeys demonstrated that moderate CR
lowered the incidence of aging-related deaths. At the
time point reported, 50% of control animals had
survived, compared with 80% of CR animals. CR
delayed the onset of several age-associated pathologies
such as diabetes, cancer, cardiovascular disease and
brain atrophy [24]. The CR trial in primates raised hope
that CR might be effective in humans.

In 2009, numerous studies continued to establish links
between caloric restriction (CR) and longevity signaling
pathways, including Sir2 (sirtuin) and p53 in D.
melanogaster [25] and the E3 ubiquitin ligase WWP-1
in C. elegans [26] as well as upstream and downstream
components of the TOR (Target of Rapamycin)
pathway: RHEB-1 in C. elegans [27], Torl and Sch9 (a
homolog of the mammalian kinases Akt and S6K) in
yeast [28], and 4E-BP (Eukaryotic Translation Initiation
Factor 4E Binding Protein) in Drosophila [29]. It was
shown that glucose shortens the life span of C. elegans
by downregulating DAF-16/FOXO activity and
aquaporin gene expression [30]. In addition, the HIF
(hypoxia inducible factor) pathway was implicated in
aging and longevity in C. elegans [31, 32]. The different
results of two studies have been in general reconciled
[33]. In 2009, it has also been shown that in C. elegans
CR is mediated by a network of independent, but
overlapping pathways [34], suggesting a ‘CR network’.
Notably, neuronal SIRT1 regulated endocrine and
behavioral responses to CR [35].

It has been shown that disruption of growth hormone
receptor (GHR) prevents calorie restriction from
improving insulin action and longevity [36]. In normal
mice, CR increased insulin sensitivity in liver and
muscle. In GHRKO mice, intrinsic insulin-sensitivity
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could be attributed to a reduction of inhibitory serine
phosphorylation of IRS-1 (Insulin receptor substrate 1)
in muscle. CR failed to further increase insulin
signaling (insulin sensitivity) in GHRKO mice as
compared to normal mice, likely explaining the absence
of CR effects on longevity in these long-lived mice
[36].

Finally, it was tested whether reallocation of nutrients
from reproduction to somatic maintenance could
explain the life extending effect of CR. If this were the
case, long life under dietary restriction and high
fecundity (reproduction) under full feeding would be
mutually exclusive. Adding methionine alone to the
dietary restriction condition was necessary and
sufficient to increase fecundity as much as did full
feeding, but without reducing lifespan. Reallocation of
nutrients therefore does not explain the responses to
dietary restriction. In contrast, reduced activity of the
insulin/insulin-like growth factor signaling protected
against the shortening of lifespan with full feeding [37].

Pharmacologic intervention

The ultimate goal of biomedical research is the
development of therapeutic drugs. As shown previously,
activation of mTOR (mammalian Target of Rapamycin)
is required for acquiring senescent phenotype in p21-
arrested human cells, whereas deactivation of mTOR
converts senescence into quiescence. In 2009, it was
further demonstrated that the inhibitor of mTOR
rapamycin decelerated cellular senescence of p21-
arrested human and mouse cells [11]. Similarly,
inhibitors of PI-3K and MEK, LY-294002 and U0126,
deactivated mTOR and suppressed cellular senescence
(converting it into quiescence) [38], defining direct and
indirect mTOR inhibitors as aging-suppressants or gero-
suppressants.

The most striking event of the year was the
demonstration that rapamycin, administrated to middle-
aged (600 day old) mice, significantly extended their
life span [39]. The effect was seen at three independent
test sites in genetically heterogeneous mice, chosen to
avoid genotype-specific effects on disease susceptibility
[39]. Rapamycin also prolonged the life of 22-month
old mice [40]. [Note: publications by Bjedov et al (Cell
Metab 2010 Jan) and by Moskalev and Shaposhnikov
(coming in print 2010) that rapamycin extends life span
in Drosophila will be reviewed next year].

It was shown that clioquinol, a metal chelator that has
beneficial effects in several models of neuro-
degenerative diseases, inhibits the activity of the
mitochondrial enzyme CLK-1 in mammalian cells.

Clioquinol-treated nematodes and mice presented a
variety of phenotypes produced by mutational reduction
of CLK-1. Given that reduction of CLK-1 slows down
aging in these organisms, these results suggest that
clioquinol (by inhibiting CLK-1) may slow down the
aging process [41].

Finally, as a follow-up of the work on the anti-aging
effects of mitochondria-targeted antioxidant SkQ1 [42],
it was demonstrated that Sk inhibits age-dependent
involution of the thymus in normal and senescence-
prone rats [43].

Stem cells and aging

In 2009, several lines of evidence suggested that
overactivation of signaling pathways might cause
exhaustion of stem cells and that vice versa ‘longevity
genes’ could prevent stem cell exhaustion. Thus,
MTOR mediated Wnt-induced epidermal stem cell
exhaustion and aging phenotypes in skin [44]. Further,
hyper-activation of mTORC1 caused hyper-
proliferation ~ and  subsequent  exhaustion  of
hematopoietic stem cells. Pharmacological approaches
showed that PTEN, TSCl1 and PML regulate
hematopoietic stem cell (HSC) maintenance through
mTORCL1 [45]. In addition, FOXO transcription factors
were found to be necessary for adult neural stem cell
homeostasis  [46, 47]. Importantly, stem cell aging
could be suppressed pharmacologically [40, 44]. The
PI3K-AKT-FoxO pathway is integral to lifespan
regulation in lower organisms plays a prominent role in
neural stem/progenitor cell (NSC) proliferation and
renewal. FoxO-deficient mice show initial increased
brain size and proliferation of neural progenitor cells
during early postnatal life, followed by precocious
significant decline in the NSC pool and accompanying
neurogenesis in adult brains [46].

In addition, functions of aging organs can be
rejuvenated by young supporting stem cells. As
published in the first issue of Aging, once-monthly
infusions of bone marrow (BM)-derived cells from
young adult female mice sustained the fertility of aging
females long past their time of normal reproductive
failure [48]. The fertility-promoting effects were
observed regardless of whether the infusions were
initiated in young adult or middle-aged females, and
were specific for bone marrow harvested from female
donors. This “rejuvenation” did not depend on the
development of mature eggs from germline cells in the
donor marrow, but from host germline cells sustained
by the infusions [48, 49]. In fact, very recent studies
showed that aged mouse ovaries lacking oocytes retain
a rare population of germline stem cells that, when
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transplanted into a young host ovarian environment, are
able to generate immature oocytes contained within
follicles [49]. Thus, reproductive failure with age may
be due, at least in part, to deterioration of somatic
microenvironments (niches) that support stem cell
function.

Nuclear reprogramming and senescence

Much interest has also been devoted in the past year to
nuclear reprogramming of differentiated cells into
induced pluripotent stem (iPS) cells by using defined
factors. Understanding which factors facilitate the
reprogramming process is thought to give clues to the
process of carcinogenesis. Inversely, nuclear re-
programming could be also envisioned as a
“rejuvenation process”. In this regard, p53 and p16'™<*
tumor suppressor proteins were shown to be important
in limiting reprogramming [50-55]. Activation of p53
was suggested to be more important in murine cells,
whereas activation of p16™** appeared the
predominant barrier in human cells [50].

Of particular importance to the field of regenerative
medicine, which will need patient-specific stem cells
derived from older patients, is reprogramming
efficiency in fibroblasts from aged humans versus
young humans. There is an age-associated decline in
reprogramming efficiency, which is largely reversed by
inactivation of the p16™<** tumors suppressor gene,
whose expression is increased markedly with aging in
several human and murine tissues [50, 55]. Along these
lines, it was shown that the increased expression of
pl6INK4a with aging could be measured on human
peripheral blood samples, and that an individual’s
pl6INK4a expression was a good biomarker of their
“molecular age” [56]. The same group also provided
further understanding of the observed linkage of SNPs
near the CDKN2a/b locus (which encodes the p16™*,
p15™K* and ARF tumor suppressors) with human
atherosclerotic disease [57]. Expression of CDKN2a/b
transcripts is decreased in individuals harboring the risk
alleles, suggesting that atherosclerotic disease may
result from aberrant, unrestrained proliferation. In this
regard, studies on mice overexposing the CDKN2a/b
locus were found to have delayed aging and extended
longevity [58].

Genetics of aging

In 2009, numerous publications extended our
knowledge on the role of sirtuins [35], TOR signaling
[59, 60], and the stress response factors HSF-1 and
DAF-16 [61] in aging. Of particular importance, it was
shown that deletion of the gene encoding Ribosomal

Protein S6 Kinase 1 (S6K1) and disruption of PKA
extend the life span of mice [62, 63], whereas the gene
encoding Eukaryotic Translation Initiation Factor 4E
Binding Protein (4E-BP) was shown to be essential for
life span extension by CR in Drosophila [29].
Moreover, 4E-BP was shown to act downstream of
TOR to modulate cardiac aging in Drosophila [64].
Finally, SIRT6 was shown to play a critical role in
DNA double-strand break repair [65].

In 2009, Kenyon and co-workers further uncovered
mechanisms of their previous observations made in
1999 (Hsin and Kenyon, Nature, 1999, 399:362-6) that
in C elegans and Drosophila the aging of the soma is
influenced by the germline: namely, when germline-
stem cells are removed, aging slows and lifespan is
increased. In 2009, it was published that a predicted
transcription elongation factor, TCER-1, plays a key
role in this process [66]. When the germ cells are
removed, the levels of TCER-1 rise in somatic tissues.
This increase is sufficient to trigger key downstream
events, as overexpression of tcer-1 extends the lifespan
of normal animals that have an intact reproductive
system. Intriguingly, TCER-1 specifically links the
activity of a broadly deployed transcription factor,
DAF-16/FOXO, to longevity signals from reproductive
tissues [66]. In mice, Foxol integrates insulin signaling
with mitochondrial function, and inhibition of Foxol
can improve hepatic metabolism during insulin
resistance and the metabolic syndrome [67].

A prior work by Willcox et al (PNAS 2008, 105:
13987) showed that genetic variation within the
FOXO3A gene was strongly associated with human
longevity. Long-lived men also presented several
additional phenotypes linked to healthy aging, including
lower prevalence of cancer and cardiovascular disease,
and high physical and cognitive function. Long-lived
men also exhibited greater insulin sensitivity associated
with homozygosity for the FOXO3A GG genotype. In
2009, confirming the Willcox observation, the flurry of
papers showed the association between SNPs in the
FoxO3A gene and extreme longevity in Japanese,
German, American, Italian, and Chinese populations
[68-71].

There were intriguing publications on the complex role
of p53 in longevity. In Drosophila melanogaster, p53
exerted developmental stage-specific and sex-specific
effects on adult life span, indicative of sexual
antagonistic pleiotropy [72, 73]. Further, an association
between single nucleotide polymorphisms (SNPs) in
p53 pathway genes and human fertility suggested that
p53 regulates the efficiency of human reproduction.
These results provide a plausible explanation for
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selective pressure to retain some alleles in the p53
pathway, and suggest that such alleles are a good
example of antagonistic pleiotropy [74].

Interestingly, SNPs in the p21 gene correlated with
longevity in an Italian population [75]. Several papers
have highlighted an important role of p53 in tissue
fitness through its impact in preventing mobilization of
stem cells harboring persistent DNA damage (ie,
dysfunctional telomeres) [76, 77]. However, the
phenotypic outcome was tissue and context specific. In
mouse epidermis deletion of p53 rescued organ
maintenance and body fitness of neborn mice with
dysfunctional telomeres [76]. In contrast, p53 deletion
in the intestinal epithelium accelerated tissue
dystruction and shortened the lifespan of aging telomere
dysfunctional mice [77]. The latter phenotype was
associated with aberrant survival chromosomal instable
stem cell clones leading to abnormal differentiation and
p53-independent apoptosis. The limitation of the
survival of chromosomal instable stem cells is likely to
represent a key step in the known role of p53 as a tumor
suppressor. Also it was shown that the p53 family
member, TAp63, is essential for maintenance of
epidermal and dermal precursors and that, in its
absence, these precursors senesce and skin ages
prematurely [78].

Model systems continue to be instrumental in
understanding the genetics of longevity. The WRN gene
defective in the premature aging disorder Werner
syndrome encodes a protein with both helicase and
exonuclease activities [79]. To dissect its genetic
functions, human WRN was tested for its ability to
rescue sgsl-related phenotypes. WRN was shown to
genetically interact with topoisomerase 3 and restore the
slow growth phenotype of sgs1 top3. WRN helicase but
not exonuclease activity was genetically required for
restoration of top3 growth phenotype, demonstrating
separation of function of WRN catalytic activities. In a
top3 mutant background, DNA unwinding by WRN
helicase may be deleterious to cell growth and genome
homeostasis [80].

In 2009, a few studies delved into the genetics of the
insulin-producing pancreatic beta-cell aging in humans
and mice [81-83]. A loss of beta-cell replication with
aging is a contributor to age-related increase in the
incidence of type Il diabetes. Prior work had shown
that p16"™“*® tumor suppressor causes an age-dependent
decline in beta-cell replication. In 2009, it was reported
that loss of Polycomb (PcG) repression of pl6INK4a
mediated by the EZH2 histone methytransferase
occurred with aging in humans and mice [82]. In mice,
somatic deletion of EZH2 led to loss of beta-cell

replication and diabetes, and these effects could be
rescued by concomitant deletion of p16™**and Arf.

This work linked alterations of chromatin architecture
with aging to expression of anti-proliferative molecules.
Bhushan and colleagues also reported a similar
regulation of p16™ ** expression with aging by the
Bmi-1 PcG protein, which functions in concert with
EZH?2 to repress p16™<** expression [81). Lastly, it was
shown that p38MAPK activates p161"<** with aging in
beta-cells, suggesting a possible pharmacologic
approach to regulating aging of this tissue [83].

Autophagy

In 2009, the simple dogma that autophagy is always
associated with or causes senescence was challenged.
Although autophagy remains a crucial anti-aging
mechanism, the relationship is likely to be complex.
Thus, autophagy was shown to be activated during
cellular senescence, and activation correlated with
negative feedback in the PI3K-mTOR pathway. A
subset of autophagy-related genes was up-regulated
during senescence: overexpression of one gene, ULK3,
induced autophagy and senescence.  Furthermore,
inhibition of autophagy delayed the senescence
phenotype, including senescence-associated secretion.
These data suggest that autophagy, and its consequent
protein turnover, may mediate acquisition of the
senescence phenotype [84]. Inhibition of autophagy in
adult Drosophila [85] or C. elegans [86] was found not
to affect longevity, however autophagy was required for
the increased life span caused by several pharmocologic
and genetic manipulations in yeast, Drosophila and C.
elegans [87-90], suggesting that autophagy may be
limiting for life span under some conditions but not
others. Interestingly, resveratrol-mediated inhibition of
mammalian S6 kinase by resveratrol suppressed
autophagy [91]. In 2009, several reports further
demonstrated that the TOR signaling pathway targets
the Atgl/Atgl3 protein kinase complex to control
autophagy [92-94].  Furthermore, TOR-mediated
autophagy regulates cell death in Drosophila
neurodegenerative disease [95].

The natural polyanion spermidine can extend the
chronological and replicative life span in yeast and
increase the median and maximal longevity of fruit flies
and nematodes (C. elegans). Spermidine was found to
act as a potent inducer of autophagy in all species
tested, including yeast, Drosophila, C. elegans [96].
The antiaging effect of spermidine was abolished by the
deletion or depletion of essential autophagy genes in
yeast, Drosophila and C. elegans [96]. In mice, a
dietary supplementation with polyanions (including
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spermidine) also increases healthspan and lifespan [97],
although the dependency of this phenomenon on
autophagy has not been addressed yet. Spermidine
likewise induces autophagy and longevity through its
capacity to inhibit histone acetylases in yeast cells [96].

Sirtuin-1 and that of its C. elegans orthologue induce
autophagy in human and nematode cells. Sirtuin-1 is
also required for the induction of autophagy by its
allosteric activator resveratrol (both in human cells and
nematodes), culture in nutrient-free media (in human
cells) and caloric restriction (in nematodes). In C.
elegans, it was found that activation of Sirtuin-1
extended longevity in an autophagy-dependent fashion.
Thus, the knockdown of the essential autophagy gene
Beclinl/ATG6 abolished life span extension by Sirtuin-
1 activation [87]. These results underscore the
contribution autophagy to the regulation of longevity by
pharmacological agents [98].

Post-transcriptional gene regulation and aging

In fact, 2009 saw an escalation in interest in
microRNAs and other non-coding RNAs implicated in
aging and replicative senescence. A prominent example
of this regulation came studies of the mitogen-activated
protein kinase (MAPK) signaling component MKK4
(MAPK kinase kinase 4). MKK4 levels were elevated
in aging tissues and in senescent cells thanks to
reductions in the abundance of four microRNAs (miR-
15b, miR-24, miR-25, and miR-141) that interacted
with the 5’- and 3’-untranslated regions of the MKK4
mMRNA and repressed its translation [99].

The other major class of post-transcriptional regulatory
factors, RNA-binding proteins (RBPs), were also the
focus of important age-related studies in 2009. Several
RBPs that affect the turnover and translation of proteins
implicated in proliferation, survival, inflammation,
neurodegeneration, and cancer (HuR, AUF1, TIA-1,
TTP) displayed elevated abundance in a broad array of
human tissues and in all ages, suggesting that their
influence extends throughout the human life span [100].
The RBP TTP (tristetraprolin) attracted especial
attention because it triggered replicative senescence
[101]; in keeping with the tumor-suppressive influence
of replicative senescence, TTP was found to be
eliminated in certain cancers [102].

Circadian clock

There is growing evidence for a link between circadian
rhythm, signal-transduction genes, metabolism, cancer
and aging [103, 104]. The circadian clock gene period
extended the health span of aging in Drosophila

melanogaster [105]. Further, circadian control of the
NAD+ salvage pathway by CLOCK-SIRT1 was
demonstrated [106]. Intriguingly, light was found to
activate MAPK (mitogen activated pathway kinase) in
zebrafish cells, and this light-dependent activation
controlled DNA repair [107]. In rats, circadian
disruption induced by light-at-night accelerates aging
and promotes tumorigenesis in rats [108]. In mice, it
was reported that N-acetyl-L-cysteine (NAC), an
antioxidant, ameliorated symptoms of premature aging
associated with the deficiency of the circadian protein
BMAL1 [109].

Cancer and aging

CR is known to slow aging and delay cancer. In 2009,
it was reported that fasting abrogates side effects caused
by chemotherapy in cancer patients. Importantly, for
those patients in whom cancer progression could be
assessed, fasting did not prevent chemotherapy-induced
reduction of tumor volume or tumor markers [110].
The link between aging and cancer via p53 was shown
to be complex in 2009. Thus, the ability of p53 to act as
a defense against tumor progression was shown to be
age-dependent [111]. Further, Levine and co-workers
previously showed that p53 activity declines with age,
and a recent study showed that p53 transcriptional
activity is reduced in senescent cells [112].
Interestingly, SIRT1 knockout mice, which do not live
longer when calorically restricted, were found to have
normal rates of skin cancer but the ability of resveratrol,
a SIRT1 activator, to protect the mice was greatly
reduced [113], indicating that the anti-tumor activity of
resveratrol is mediated at least in part by SIRT1.

Reduced incidence and delayed occurrence of fatal
neoplastic diseases in growth hormone receptor/binding
protein knockout mice.  These changes of fatal
neoplasms are similar to the effects observed with
calorie restriction and therefore could possibly be a
major contributing factor to the extended life span
observed in the GHR/BP KO mice. [114]

Overall, 2009 was an exciting year for increasing our
understanding of aging and its relationship to age-
related disease, and developing promising strategies and
candidates for pharmacological interventions into the
aging process. Several approaches in combination with
drugs and diet may slow aging, although not making it
negligible [115].
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or were simply overlooked. Here we referenced only
papers published in the 2009 calendar year. That was
not an easy task given that most of publications are the
continuation of or based on previous research. We
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