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Hypothesis

Why men age faster but reproduce longer than women: mTOR and
evolutionary perspectives
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Abstract: Women live longer than men. Yet, it is believed that men do not age faster than women but simply are weaker at
every age. In contrast, | discuss that men age faster. From evolutionary perspective, high accidental death rate in young
males is compatible with fast aging. Mechanistically, hyper-activated mTOR (Target of Rapamycin) may render young males
robust at the cost of accelerated aging. But if women age slower, why then is it women who have menopause? Some
believe that menopause is programmed and purposeful (grandmother theory). In contrast, | discuss how menopause is not
programmed but rather is an aimless continuation of the same program that initially starts reproduction at puberty. This
quasi-program causes over-activation of female reproductive system, which is very vulnerable to over-activation.
Mechanisms of aging and menopause are discussed.

Longevity: men and women High accidental death rate and fast aging
(evolutionary perspective)
Women have lived longer than men in different

countries and in every era [1]. In 1980 in the USA, the There is a very noticeable jump of mortality in the late
estimated life expectancy at birth was 70 years for men teens in men [1]. Young men are often engaged in
and 77.5 years for women [2]. In the world, 75% and competitive, reckless, and dangerous activities.
90% of people older than 100 years and 110 years Therefore, even in modern society, the accidental
(respectively) are women. And the longest living person death rate is high in young men. Historically, the
(122 years old) was a woman. But do women age slower accidental death rate in men was much higher than it is
than men? The conventional opinion is that women and now. (Due to a fierce competition for status and mates,
men age at the same rate but men are ‘less robust’ than due to fights and wars, young men were Killed at a
women [1]. Seemingly in agreement, the mortality rate is very high rate). So, historically, men had lower
lower in young women compared with young men. In chances to survive into old age than women had. And,
women, the mortality rate is lower at every age, even in according to evolutionary theory, a high accidental
childhood. In other words, “women do not live longer death rate determines fast aging [3-5]. If most men
than men because they age slowly, but because they are died young from accidental death, then they could not
more robust at every age” [1]. This reasoning would be live long enough to experience aging. Then there was
correct if causes of death were the same at every age. no natural selection to postpone aging. So accelerated
However, young and old men die from different causes. aging in men is predictable from evolutionary
Young men die from accidents, while old men die from perspective. But accelerated aging is also predictable
aging (technically speaking, from age-related diseases). mechanistically.
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Mechanistic explanation: antagonistic pleiotropy
and mTOR

In males, muscle hypertrophy and heavy body helps to
compete with other males. (In fact, men are larger than
women.) Cellular growth and hypertrophy are stimulat-
ed by the mTOR (mammalian Target of Rapamycin)
intracellular signaling pathway. Insulin, growth factors,
amino acids, glucose lipoproteins, and testosterone all
activate the mTOR pathway [6-9]. In turn, the mTOR
pathway stimulates protein synthesis and cell size
growth [10]. For example, skeletal muscle hypertrophy
depends on the mTOR pathway [11, 12]. In addition,
inhibition of the mTOR pathway decreases testosterone
levels and spermatogenesis [13]. Thus, activation of
mTOR may provide a selective advantage to young
males.

On the other hand, the mTOR pathway is required
forcellular senescence of mammalian cells [14-18].
Cellular aging is driven by the remaining activation of
mitogenic signaling pathways in post-mitotic cells [19,
20]. In fact, mechanistically, aging is a continuation of
growth, driven in part by mTOR [21]. In agreement,
MTOR is involved in age-related diseases such as
atherosclerosis, neurodegeneration, cancer, which are
deadly manifestations of aging. (see for review [22-24].
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And rapamycin prolongs lifespan in mammals [25].

Thus, over-activation of mTOR may provide an
advantage (muscle hypertrophy, high levels of
testosterone and high spermatogenesis) in early life at
the cost of accelerated aging later in life. As an
illuminating example, mice over-expressing growth
hormone exhibit increased levels of IGF-1 and adult
body size, reduced life span and reproductive life span
[26]. (Note: IGF-1 stimulates mTOR, Figure 1).

Accelerated age-related diseases in men

Humans do not die from “healthy” aging. Humans die
from age-related diseases. The mTOR pathway is
involved in age-related diseases such as cancer,
atherosclerosis, hypertension, heart failure, osteo-
porosis, type Il diabetes [22, 24, 27]. These diseases are
deadly manifestations of aging. When aging is
accelerated, age-related diseases occur earlier in life too.
Healthy aging (a late onset of diseases) is associated
with longevity (see for discussion [28]). For example,
centenarians (100 years old or older) show a delay in
the onset of age-related diseases, including cardio-
vascular disease, type 2 diabetes, cancer and
Alzheimer’s disease. In other words, those who age
slower are healthier [29, 30].
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Figure 1. Program of growth and quasi-program of aging. The TOR pathway is
activated by growth factors, hormones and nutrients. This activation is beneficial early in
life by stimulating growth and muscle hypertrophy. Evolutionary perspective: This was
especially important for prehistoric men, living in dangerous environment that required
physical strength. mTOR is involved in aging later in life, but most men died young from
accidental death. Thus, robustness early in life is associated with accelerated aging.
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If women age slower than men, then age-related
diseases must be delayed in women. In fact, most age-
related diseases are delayed in women compared with
men. For example, coronary atherosclerosis is
postponed in women. Not only atherosclerosis, but also
cancer and most other diseases of aging occur earlier in
men than in women [31]. Women also live more years
than men free of each of these diseases with the
exception of arthritis [32]. Women rarely die from age-
related diseases before menopause. The later onset of
diseases in women compared with men suggests that
women age slower than men.

Intriguingly, slower erosion of human telomeres favor
females [33] and, even further, the rate of leukocyte
telomere shortening predicts mortality from cardio-
vascular disease in elderly men [34]. | speculate that
high rate of telomere shortening reflects cellular hyper-
activation and may be suppressed by rapamycin.

Aging versus reproductive aging

Yet common wisdom holds that women age faster than
men. One should not confuse aging and subjective
perception of youthfulness and sexual attractiveness,
which reflects fertility. Aging is an increase of the
probability of death. And a 50-year-old man has higher
chances to die than a 50- year-old woman. Furthermore,
men acquire grey hair and wrinkles faster than women
and thus men even ‘look’ older [35]. Although men age
faster, they can reproduce longer. And here is another
puzzle: why women undergo menopause.

Like aging itself, menopause is tolerated by natural
selection, because women (until recently) did not live
long enough to experience it. (In modern society, there
must be a very strong natural selection for delayed
menopause). So an evolutionary explanation is simple:
ancestral women did not live long enough to have
menopause. But male lifespan was even shorter: why
then do men not have menopause? What is so special
about female reproduction?

Can menopause be programmed?

There is common opinion among traditional
gerontologists that menopause is beneficial for women,
has an evolutionary advantage and is adaptive [36-38].
It was suggested, for instance, that menopause prevents
death of women in labor. The most popular is a
“grandmother hypothesis” that menopause frees older
women to help their daughters to raise grandchildren.
This is a sort of group-selection hypothesis. Why do not
daughters delay reproduction just in order to help their
mothers raise siblings? Or what is the biological sense

to stop reproduction, if a woman has no grandchildren
living with her? The crucial assumption of
‘grandmother’ hypothesis is that menopause occurs only
in humans [37]. Yet, menopause was documented in
non-human primates, rodents, whales, dogs, rabbits,
elephants and domestic livestock [39]. It was shown, for
instance, that mice eventually undergo ovarian changes
analogous to menopause in humans [40, 41].

It was shown that grandmothers may promote survival

of their maternal grandchildren in Gambia [37].
Grandmothers are useful but menopause is not. There is
no experimental evidence that menopause is beneficial
even when women live with grandchildren in Gambia.
Menopause accelerates age-related diseases such as
atherosclerosis, osteoporosis and cancer [42, 43].
Reproductive death provides no selective benefit (unless
group-selection theories of aging are correct) and
‘grandmother hypothesis’ contradicts the evolutionary
theory. If aging is not programmed, then reproductive
aging is not programmed too.
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Figure 2. Negative feedback and insulin resistance. TOR
is activated by nutrients and insulin and in turn causes
depletion of IRS1/2 and insulin resistance. Whereas nutrients
activate TOR, low nutrients and metformin deactivate TOR.

TOR-driven quasi-programmed aging

Aging is not programmed but quasi-programmed [22,
44-46]. (“Quasi-” means “as if, resembling”). Quasi-
program is an aimless continuation of a useful program
that was not switched off upon its completion. Unlike a
program, a quasi-program has no purpose. Develop-
mental programs become aimless quasi-programs later
in life. Quasi-programs are driven by antagonistic
pleiotropic genes, which are beneficial early in life on
the cost of aging later in life. Most genes that control
aging and longevity constitute the mTOR pathway [22,
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23]. mTOR is absolutely essential during embryonic
development [47, 48]. In post-development, mTOR is
involved in aging and age-related diseases [22].

Nutrients activate mTOR and cause insulin-resistance in
cell culture [49, 50] as well as systemically in rodents
and humans [51-54]. There is a negative feedback loop
between insulin signaling and TOR (Figure 2). When
mTOR is activated, it blocks insulin signaling (insulin
resistance) [49, 55]. Noteworthy, insulin resistance is
associated with premature menopause in some patients
[56].

The menstrual cycle is fragile

Since aging is not programmed, it does not hurt on
purpose. It does not cause ovarian failure (menopause) on
purpose. The logic of aging is simple: the most fragile
systems fail first. A female reproductive system is
fragile because it depends on exact interactions between

The hypothalamus and ovaries, communicating via
dozens of hormones. The menstrual cycle is regulated
by interplay of negative and positive feedback loops.
The hypothalamus stimulates the pituitary gland to
secrete Follicle-Stimulating Hormone (FSH), which in
turn stimulates follicles in the ovaries (Figure 3).
Follicles maturate and secrete estrogens. Estrogens
inhibit the hypothalamus, decreasing secretion of FSH
(a negative feedback loop). In turn, FSH stimulates
ovarian follicles, which produce estrogens, which in
turn inhibit FSH production. Also, estrogens stimulate
secretion of Lutenizing Hormone (LH). LH in turn
causes ovulation. So for the normal menstrual cycle, the
hypothalamus should have a narrow range of sensitivity
to estrogens. Both too high and too low sensitivities are
not compatible with menstrual cycles. In comparison,
regulation of reproduction in men is simpler. There is a
gradual decrease in fertility in men too (analogous to
pre-menopause), although this usually does not result in
testicular failure during a man’s lifetime [57, 58].
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Figure 3. From programmed puberty to quasi-programmed menopause. For simplicity, only the
FSH-estrogen feedback loop is shown. FSH stimulates follicles and production of estrogens (Est). Estrogens
inhibit FSH production (negative feedback). (A) In girls, the hypothalamus is extremely sensitive to
estrogens and even low levels of estrogens inhibit FSH. (B) The onset of menstrual cycle. While the
hypothalamus is becoming resistant to estrogens, FSH stimulates the ovaries and estrogen production.
Progressive activation of follicles from the dormant pool serves as the source of fertilizable ova. (C) Pre-
menopause. While the hypothalamus is becoming progressively resistant to estrogens, FSH progressively
over-stimulates the ovaries. (D) The ovaries fail. Menopause occurs when the primordial follicle pool is
exhausted. Estrogen levels drop. The feedback between hypothalamus and the ovaries is disrupted.
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Quasi-programmed menopause

A half century ago, Vladimir Dilman proposed a
“biological clock” that initially launches reproduction in
puberty and then causes menopause [59, 60]. This idea
is absolutely compatible with quasi-programmed nature
of menopause, as discussed herein.

Before puberty, the hypothalamus is extremely sensitive
to estrogens (Figure 3 A). Even low levels of estrogens
suppress FSH production and, therefore, levels of FSH
are low. At puberty, the hypothalamus becomes more
resistant to estrogens. Then low levels of estrogens
cannot suppress FSH. FSH in turn stimulates the
ovarian follicles. Follicles produce estrogens, which in
turn inhibit FSH production (Figure 3 B). During
lifetime, resistance to estrogens continues to increase
(Figure 3C). This ever-increasing resistance is an aim-
less continuation of the same program that initiated
menstrual cycle at puberty. FSH is elevated in pre-
menopause and rising serum FSH levels is one of the
earliest signs of human female reproductive aging [61],
[62]. Rising FSH levels over-stimulate the ovaries
(Figure 3C), thus depleting follicles (Figure 3D).

FSH hyper-stimulates the ovaries, causing more
follicles to be recruited simultaneously (Figure 3 C).
This may explain the increased tendency of older
mothers to have dizygotic twins [63]. Due to
hypothalamic resistance to estrogens, estrogens cannot
induce LH surges, which are necessary for ovulation.
Therefore, follicles are recruited without progression to
ovulation. Therefore, fertility gradually decreases long
before menopause.

Hypothalamic resistance to estrogens causes higher
FSH levels and lower LH pulses, disturbed feedback
relationships and decrease in fertility [64]. Levels of
estrogens tend to be increased in pre-menopause [64],
but even increased estrogens cannot suppress FSH [61].
FSH over-stimulates follicle recruitment, leading
eventually to follicular depletion (Figure 3D). This
process eventually results in ovarian failure (Figure 3
D). Post-menopause is characterized by a drop in
estrogen levels because of the depletion of follicular
oocytes that normally produce estrogen (Figure 3 D).

Noteworthy, aged mouse ovaries possess rare
premeiotic germ cells that can generate oocytes
following transplantation into a young host environment
[65], and even further young adult donor bone marrow
infusions into female mice postpone age-related
reproductive failure [66]. In other words, some follicles
may become unresponsive due to age-associated over-
stimulation but can be rejuvenated.

Thus, reproductive aging is set in motion at puberty by
an ever-increasing hypothalamic resistance to estrogens.
By increasing resistance of the hypothalamus to
estrogens, the developmental program establishes the
menstrual cycle at puberty. There is no program to
cause menopause. It simply happens because resistance
to estrogens (and some other hormones) is ever-
increasing. This is an example of a quasi-program, a
continuation of a program that was not switched off
upon its completion (at puberty). The quasi-program
interrupts the same reproductive function that the
program establishes. The same mechanism (resistance
of the hypothalamus to estrogen) first starts and then
ends reproduction in women. An increased resistance to
estrogens can explain both initiation and termination of
the menstrual cycle.

How may we explain an increased resistance to
estrogens? Resistance may be secondary to hyper-
stimulation by estrogens themselves. In fact, in old
acyclic mice, ovariectomy for 2 months partially reversed
the hypothalamic resistance [41]. Hyper-stimulation of
the hypothalamus by estrogens may cause resistance, in
turn increasing stimulation of the ovary, until failure
occurs.  Alternatively,  overstimulation of the
hypothalamus with hormones and nutrients can cause
estrogen-resistance. Is there a feedback resistance to
overstimulation as shown in Figure 2? Then over-
stimulation, with secondary resistance, is the driving
cause of reproductive program and quasi-program. And
most importantly over-stimulation occurs simultaneously
both in the ovary and the brain.

MTOR and menopause

| propose that the increasing activation of mTOR (both
in the hypothalamus and the ovary) drives hormone
resistance, causing the onset of reproduction and then
hyper-stimulation of the ovary and the hypothalamus
and finally menopause (Figure 4). Let us bring together
several pieces of data.

First, mTOR is a regulator of puberty onset via
modulation of the hypothalamus [67]. Also, both FSH
and estrogens activate the mTOR pathway [68], [69]. So
if TOR is activated constantly, it may not respond
further to stimulation (hormone resistance).

Second, in mice lacking PTEN in oocytes, the entire
primordial follicle pool is activated. Subsequently, all
primordial follicles become depleted in early adulthood,
causing premature ovarian failure [70]. PTEN loss
results in suppression of Foxo, so the Foxo was a primer
suspect [70]. Yet, in theory loss of PTEN must also
result in mTOR overactivation (Figure 1). | suggest that
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Figure 4. Program of puberty and quasi-program of menopause. The TOR
pathway in the hypothalamus and the ovary is activated by growth factors,
hormones (leptin, estrogens and FSH, LH, respectively) and nutrients. This activation

starts menarche and then leads to menopause.

premature ovarian failure is caused by over-activation
of TOR. (Note: this paper was initially written in 2008
and was ahead of its time and was not well received by
conventional journals. Now it can be updated). It was
shown tuberous sclerosis complex (Tsc), which
negatively regulates mTOR, functions in oocytes to
maintain the quiescence of primordial follicles. In
mutant mice lacking the Tscl gene in oocytes, the entire
pool of primordial follicles is activated prematurely due
to elevated mTORCL1 activity in the oocyte, ending up
with follicular depletion in early adulthood and causing
premature ovarian failure [71, 72].

Third, calorie restriction (CR) prevents age-related
increase in estrogen resistance in the hypothalamus of
old female mice [73]. As already discussed, CR de-
activates TOR [74]. | speculate that CR de-activates
mTOR and delays estrogen resistance in the
hypothalamus. Simultaneously, by deactivating mTOR
in the oocytes, it may delay their depletion.

It was shown almost a century ago [75] and then
reproduced numerous times that CR extends lifespan
and prevents age-related infertility in rodents. In most
of these studies, CR was initiated at weaning, causing a
delayed onset of sexual maturation. So, the same
condition (CR) delays both puberty and menopause.
This is consistent with the notion that a quasi-program
(menopause) is a mere continuation of the program
(puberty). But quasi-programs can be manipulated,
exactly like programs. Recently it has been shown that
a moderate caloric restriction initiated in rodents during
adulthood sustains reproductive function of the female
reproductive axis into advanced chronological age [76].

Fifth, metformin, an antidiabetic drug, activates AMPK
and thus inhibits mTOR [77]. Furthermore, metformin
inhibits MTOR in AMPK-independent manner too.
Metformin restores ovulations in patients with
premature menopause associated with polycystic ovary
syndrome [56]. On the other hand, metformin delays a
premature onset of the menstrual cycle [78]. So the
same agent that inhibits the onset of reproductive
function also inhibits its termination. This antagonistic
pleiotropic effect is consistent with the notion of the
same mechanism switching reproduction on and off.
Metformin slowed down aging and the age-related
switch-off of estrous function in mice [79]. Thus
menopause can be delayed pharmacologically.

CONCLUSION

This article presents two hypotheses. The first
hypothesis explains (from both an evolutionary and
mechanistic perspective) why aging is accelerated in
men. From the evolutionary perspective, the high
accidental death rate in young men determines an
accelerated aging. A model of TOR-driven aging
provides a mechanistic explanation. When the
accidental death rate is high, it is important to be bigger
and stronger. And the mTOR pathway is involved in
growth and cellular hypertrophy. So, overactivated
mTOR may be adaptive for young men.

But this can accelerate aging. At the cost of accelerated
aging, over-stimulated mTOR pathway may provide an
advantage earlier in life. And vice versa as discussed,
“weak mTOR” provides disadvantage earlier in life
and, vice versa, robustness and fast aging are associated
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[28]. Noteworthy, “competitive, aggressive personality”
among men is associated with atherosclerosis and
earlier death from age-related coronary disease [80].

The second hypothesis explains why menopause in
women occurs despite slow-aging. Simply, the
regulation of the menstrual cycle is fragile. There is a
fine balance between ovarian stimulation by FSH and
feedback hypothalamic responsiveness to estrogens.
The menstrual cycle is vulnerable. Menopause is an
example of a quasi-program (a program that was not
switched off after its completion). In puberty, an
increasing resistance to estrogen starts reproduction (a
program). A further increase in the resistance (a quasi-
program) causes overactivation of the ovary, decreasing
fertility. This process can be treated pharmacologically
(as any other age-related disease) to postpone menopause
Potential therapeutic interventions to postpone
menopause (as well as abolishment of the harmful
consequences of menopause) will be discussed in
forthcoming book The Origin of Aging.
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