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Abstract: Caloric restriction (CR), in the absence of malnutrition, delays aging and prevents aging-related diseases through
multiple mechanisms. A reduction in chronic inflammation is widely observed in experimental models of caloric restriction.
The low inflammation status may contribute to the reduced incidence of osteoporosis, Alzheimer’s disease, cardiovascular
diseases and cancer in the aging subjects. The association of caloric restriction with low inflammation suggests a role of
energy accumulation in the origin of the chronic inflammation. This point is enforced by recent advances in obesity
research. Abundant literature on obesity suggests that chronic inflammation is a consequence of energy accumulation in
the body. The emerging evidence strongly supports that the inflammatory response induces energy expenditure in a
feedback manner to fight against energy surplus in obesity. If this feedback system is deficient (Inflammation Resistance),
energy expenditure will be reduced and energy accumulation will lead to obesity. In this perspective, we propose that an
increase in inflammation in obesity promotes energy expenditure with a goal to get rid of energy surplus. A decrease in
inflammation under caloric restriction contributes to energy saving. Inflammation is a mechanism for energy balance in the
body. Inflammation resistance will lead to obesity. We will review the recent literature in support of the viewpoints.

INTRODUCTION et al.) in the circulation. The systemic inflammation is
due to an inflammatory response in adipose tissues that
Caloric restriction (CR) reduces the levels of multiple are under quick expansion. Adipocytes produce these
aspects of inflammation [1-3], suggesting a link cytokines. In addition, macrophage infiltration into the
between energy status and inflammation. This linkage is adipose tissue contributes significantly to the cytokine
enforced by recent progress in obesity research. Chronic production. Although we have learned a lot about the
inflammation is widely observed in obesity (metabolic signaling pathways that link energy accumulation
syndrome). The obesity-associated inflammation is (adiposity) to chronic inflammation, we know little
involved in pathogenesis of type 2 diabetes, hyper- about the real biological significance of the
tension, atherosclerosis, fatty liver, cancer metastasis, inflammation. This article addresses this issue, and
and asthma in obesity. Obesity has a higher prevalence provides an overview of the interaction of inflammation
in the aging population as a result of reduced energy and energy balance.
expenditure with less physical activity. Physical
activities consume a major portion of energy in our 1. Chronic inflammation from energy accumulation
daily life, which are usually reduced in the aging
population. This reduction in energy expenditure may In obesity research, the link between chronic
lead to energy accumulation in the body and inflammation and energy (fat) accumulation is well
consequently a gain in adiposity. In obesity, systemic established. The initial observation of TNF-o elevation
chronic  inflammation  occurs  with  elevated in adipose tissue of obese mice provides the first
proinflammatory cytokines (IL-6, MCP-1, CRP, PAI-1, evidence for the chronic inflammation in 1993 by
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Hotamisligil and colleagues [4]. Thereafter, the concept
was enforced by abundant literature identifying
increases in many other inflammatory cytokines, such
as plasma C-reactive protein (CRP), interleukin 6 (IL-
6), plasminogen activator inhibitor-1 (PAI-1), in models
of obesity. Activation of inflammatory kinases such as
IKKp (IkBa kinase beta) and JNK1 (c-Jun N-terminal
kinase 1) provides additional evidence for activation of
intracellular inflammatory pathways in obesity [5-6].
Obesity-associated inflammation is chronic, systemic,
low-grade, and not linked to any infection. In contrast to
inflammation induced by bacteria or virus infection
where neutrophil granulocytes are elevated in the
circulation, neutrophil granulocytes are not increased in
blood in obesity. The inflammation is systemic since the
inflammatory cytokines are increased in the circulation.
The inflammation is at a low grade in obesity since
there is no fever and malaise, which are often observed
for inflammation associated with bacteria/viral
infection.

2. Inflammation origin: Energy accumulation may
induce inflammation through metabolites of fatty
acids and glucose (Figure 1)

The metabolites of fatty acids and glucose include
diaglyceride (DAG), Ceramide, and reactive oxygen
species (Figure 1). They activate inflammatory response
through several approaches. They may direct interact
with signaling kinases (PKCs, JNKs and IKKs) in cells
[7]. They may also act through cell membrane receptors
for lipids, such as TLR4, CD36 or GPR [8-11]. The
reactive oxygen species (ROS) are generated from fat or
glucose oxidation in mitochondria. ROS may induce
activation of the inflammatory kinases (JNK and IKK).
The lipids also induce endoplasmic reticulum (ER)
stress for activation of JNK and IKK [12-13]. In CR,
these metabolites of glucose and fatty acids are reduced
from less calorie intake. The risk of inflammation is
reduced.

In obesity, adipose tissue is a major source of chronic
inflammation [14-15]. In adipose tissue, adipocytes and
adipose tissue macrophages (ATM) are the major cell
types responsible for the production of inflammatory
cytokines. The representative cytokines include TNF-a.,
IL-6, MCP-1 and PAI-1. Adipokines (Leptin and
adiponectin) are produced by adipocytes and also
involved in the regulation of inflammation. Macro-
phages and adipocytes are activated during the process
of adipose tissue expansion. Recent studies suggest that
the adipose tissue expansion induces a local hypoxia
response [16]. The hypoxia response serves as a
common root for all of the stress responses in adipose
tissue, such as oxidative stress, ER stress, and

inflammatory stress [17-19]. Hypoxia directly promotes
the chronic inflammation through activation of
transcription factors (NF-kB and HIF-1) in adipocytes
and macrophages [16]. The hypoxia response is a result
of tissue expansion. In CR, adipose tissue expansion is
reduced or under controlled. The risk factors for
inflammation, such as adipose tissue hypoxia, lipid
accumulation, ER stress and oxidative stress are all
reduced or absent. These may explain why CR reduces
the risk for chronic inflammation in the body.
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Figure 1. Energy accumulation induces inflammation.
Energy accumulation leads to elevation in glucose and fatty
acids. These substrates lead to production of diaglycerids (DAG),
Ceramide, reactive oxygen species (ROS) and activation of toll-
like receptor 4 (TLR4) in cells including macrophages and
endothelial cells. All of these events may activate the
inflammatory signaling pathways, such as IKK/NF-kB and
IJNK/AP-1. As a consequence, expression of inflammatory
cytokines and adhesion molecules may increase for chronic local
inflammation. When inflammatory cytokines are elevated in the
circulation, the energy accumulation causes systemic chronic
inflammation, which is observed in obesity. This kind of chronic
inflammation is limited or prevented by calorie restriction

3. Inflammation feedback to energy accumulation

The inflammation observed in adipose tissue likely
serves as a feedback signal locally in adipose tissue and
systemically for energy expenditure (Figure 2). In
adipose tissue, inflammation inhibits adipocyte
expansion and adipocyte differentiation, changes
adipocyte endocrine and induces extracellular matrix
remodeling [20]. The local response is translated into a
systemic response through cytokines and free acids
released from adipose tissue.
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Inflammation in obesity. Rapid growth of adipose tissue leads to quick expansion of adipose tissue. When

angiogenesis or vessel dilation can not meet the demand for blood supply, there will be an adipose tissue hypoxia (ATH) from
lack of blood supply. ATH will induce angiogenesis and trigger inflammation. Inflammation will promote angiogenesis and
vasodilation locally in the tissue for extracellular remodeling. When inflammatory cytokines and fatty acids are elevated in the
circulation, they will promote energy expenditure systemically. The inflammatory response may also induce hyperglycemia and
energy disposal through glucose excretion in urine. In this way, inflammation acts through insulin resistance and hyperglycemia.

(a) Adipocyte inhibition. A major function of adipocytes
is to store fat. In addition, the adipocytes secrete many
cytokines/hormones  in  its  endocrine  activity.
Inflammatory cytokines inhibit adipocyte function in
multiple  aspects. These include inhibition of
preadipocyte differentiation, induction of lipolysis and
suppression of adiponectin expression in mature
adipocytes. These inhibitory activities are well
documented for TNF-o and IL-1 [21-23]. At the
molecular level, inflammation inhibits insulin signaling
pathway [24-26] and PPARy activities in adipocytes [27].
These effects contribute to suppression of tissue
expansion, and alteration in cytokine profile. The
disorders in lipid metabolism and cytokine balance
contribute to the whole body insulin resistance, a result of
impaired insulin signaling in multiple organs (skeletal
muscle, liver, and adipose tissue) [28-30]. Insulin
resistance may induce hyperglycemia, which in turn leads
to glucose excretion through urine (type 2 diabetes). The
type 2 diabetes is an extreme condition in the body to get
ride of energy surplus in an effort to prevent energy
accumulation in the body.

(b) Adipose tissue remodeling: Macrophage infiltration
is a major marker of local inflammation in the adipose
tissue in obesity. Adipose tissue macrophages (ATM)
have been under active investigation since 2004 when
macrophage infiltration was initially identified in obese
mice [31-34]. The discovery provides a source for TNF-
o in adipose tissue since mature adipocytes produces
very little TNF-a [31-34]. The biological significance
of macrophage infiltration remains to be elucidated.
However, more and more evidence suggests that
macrophages are required for adipose tissue remodeling
and adipogenesis of preadipocytes. Macrophages may
serve as a signal amplifier in the adipose tissue for
stimulation of angiogenesis [35]. Macrophages produce
many angiogenic factors, such as PDGF, TGF-3 and
HGF, which are increased in adipose tissue in obese
individuals [36-37]. Interestingly, this activity of
macrophages is required for adipose tissue growth in
lean mice [38-39] and obese mice [35]. Macrophages
may also regulate blood flow through production of
vasodilators (such as NO). Macrophages may clean the
cell debris of dead adipocytes within the adipose tissue
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[40]. An increase in adipocyte death was reported in the
adipose tissue of obese mice, and the dead cells were
surrounded by ATMs to form the “Crown” like
structure [40-41]. The cell death in adipose tissue may
be a result of the hypoxia response [42]. In CR, the
adipose tissue expansion is under control, there are not
such risk factors for macrophage activation in adipose
tissue.

(c) Fuel mobilization. Inflammation regulates fuel
mobilization. Fuel (fatty acids) mobilization from
adipose tissue to other tissues is controlled by the
nervous system and hormones/cytokines. The role of
inflammatory cytokines has drawn a lot of attention in
the fuel mobilization. Cytokines such as TNF-a, IL-1,
IL-6, et al., activate fuel efflux in adipocytes through
lipolysis, in which free fatty acids (FFAs) are generated
from triglycerides under hydrolysis and released into
blood stream. FFAs are normally oxidized in
mitochondria for ATP production. An increase in FFA
supply may lead to acceleration of energy expenditure.
However, when FFA supply overrides the consumption,
they deposit in non-adipocytes in the form of ectopic fat
deposition. The ectopic fat contributes to pathogenesis
of fatty liver disease and atherosclosis (deposit on the
blood vessel wall). In the physiological conditions, IL-6
secreted by contracting muscle is involved in
coordination of fuel mobilization between adipose
tissue and skeletal muscle during exercise [43-44]. In
CR, the fatty acid supply is limited as a result of
reduced calorie intake, the risk for ectopic fat deposition
will be reduced. This may help in prevention of fatty
liver and atherosclosis.

(d) Energy intake. Inflammatory cytokines are involved
in the regulation of energy intake and expenditure. IL-1
and IL-6 reduces food intake and prevent hyperphagia
[45-46]. Cytokines (IL-1, IL-6 and TNF-a) also induce

energy expenditure [46-50]. These activities of
cytokines are dependent on their actions in the central
nervous  system  [46-47,  51-52].  Therefore,

inflammatory cytokines may serve as an anti-obesity
signal by modifying both energy intake and energy
expenditure. Additionally, these data indicate that the
inflammatory cytokines may serve as a link between
peripheral tissues and central nervous system in the
control of energy balance.

4. Energy expenditure by inflammation

The activities of inflammatory cytokines on adipocytes
and neurons suggest that inflammation may inhibit
energy accumulation. They induce energy expenditure
and inhibits food intake. These possibilities are strongly
supported by phenotypes of transgenic mice with

chronic inflammation and by cytokine infusion studies.
Transgenic mice of IKK2/NF-kB have provided new
evidence.

The IKK2/NF-kB pathway is a dominant inflammation
signaling pathway. The pathway has been under active
investigation in the obesity field after IKKf was found
to induce insulin resistance in obese mice [5]. The
serine kinase IKK has three major isoforms including
IKKa (IKK1), IKKB (IKK2) and IKKY, in which IKKf
is required for NF-kB activation [53]. In obesity, IKK]
is activated by several intracellular signals, such as
ROS, ER stress, DAG, and Ceramide. IKKp is also
activated by the extracellular stimuli including TNF-a,
IL-1, and fatty acids [8], and hypoxia [54]. IKKp
induces NF-kB activation by phosphorylation of the
Inhibitor Kappa B alpha (IkBa) [55].

NF-kB (nuclear factor kappa B) is a ubiquitous
transcription factor that is formed by two subunits of
Rel family, which include seven members, p65 (RelA),
p50 (NF-kB1), c-Rel, RelB, p100, p105, p52 [56].
These members form a homodimer or heterodimer in
the regulation of gene transcription. In most case, NF-
kB is a heterodimer of p65 and p50. P65 contains the
transactivation domain and mediates the transcriptional
activity of NF-kB. P50 wusually inhibits the
transcriptional activity of p65 [57], and the inhibition
disappears in the NF-kB p50 knockout mice [58]. In the
classical pathway, NF-kB activation is mediated by
IKKp-induced phosphorylation, proteasome-mediated
degradation of IkBoa [53]. In response to stress
responses, NF-kB promotes lipid mobilization through
suppression of PPARy activity in the nucleus [59]. It
also induces transcription of inflammatory cytokines
(TNF-a, IL-1, IL-6, MCP-1, et al.). In the alternative
pathway, NF-kB is activated by hypoxia in the absence
of IkBa degradation. This type of NF-kB activation in
adipocytes and macrophages contributes to chronic
inflammation in the adipose tissue of obese individuals
[16].

NF-kB activity may promote energy expenditure. This
activity of NF-kB is supported by documents on energy
expenditure in cachexia [60-61] and infection.
However, the role of NF-kB in energy expenditure was
not tested in transgenic models. To this point, we
investigated energy metabolism in transgenic mice with
elevated NF-kB activities. The transcriptional activity
of NF-kB is enhanced either by over-expression of NF-
kB p65 (RelA) in the fat tissue, or inactivation of NF-
kB p50 (NF-kB1) by global gene knockout [65]. In
these two models, inflammatory cytokines (TNF-o and
IL-6) were elevated in blood and energy expenditure
was increased in day and night [65]. The oxygen
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consumption and CO2 production were both increased
in the mice. Locomotion was not altered, but food intake
was increased in the mice. Expression of inflammatory
cytokines (TNF-o and IL-6) was elevated in adipose
tissue and macrophages. On a high fat diet (HFD), both
lines of transgenic mice were protected from obesity and
insulin resistance [65-66]. The data suggests that the
transcription factor NF-kB promotes energy expenditure
and inhibits energy accumulation. The inflammatory
cytokines may mediate the NF-kB activity in energy
expenditure. In the mice, lipid accumulation is prevented
by the enhanced energy expenditure. The studies suggest
that inflammation may prevent insulin resistance by
eliminating lipid accumulation. IKK[} was investigated in
the control of insulin sensitivity [5, 62-63] and food
intake in transgenic mice [64]. However, IKK[3 was not
investigated in the control of energy expenditure in these
studies.

NF-kB may promote energy expenditure through the
inflammatory cytokines. In the two transgenic models,
systemic inflammation was observed with elevated
proteins for TNF-o and IL-6 in the serum [65-66].
Expression of TNF-a and IL-1 mRNA was increased in
adipose tissue and macrophages. These cytokines are
positively associated with energy expenditure in the
body [61]. In transgenic mice with deficiency in these
cytokines or their receptors, energy accumulation is
enhanced, suggesting a reduction in energy expenditure.
This positive energy balance was reported in transgenic
mice with deficiency in TNF-a [50], IL-1 [45] or IL-6
[46]. On the other side, when these cytokine activities
are enhanced in transgenic mice, energy accumulation is
decreased leading to a lean phenotype [48-49, 67-68].
The cytokines may act in the hypothalamus of central
nervous system to regulate the energy balance [46-47,
51-52]. In addition to the central mechanism, activation
of mitochondria by the cytokines in the peripheral
tissues may also contribute to the energy expenditure.
TNF-a and IL-1 enhances mitochondrial function
through phosphorylation-mediated activation of PGC-
la [69]. This activity of inflammatory cytokines may
contribute to energy consumption in mitochondria-
enriched tissues/organs such as liver, skeletal muscle
and brown fat. Inflammation may be a drug target in the
management of energy metabolism [70-71].

5. CR and chronic inflammation

Studies have demonstrated that CR decreases the
circulating levels of inflammatory cytokines and
inflammatory signaling activities in a wide variety of
tissues [1-3]. CR is able to decrease global levels of
inflammatory responses in the body. Interestingly, the
beneficial effects of CR may be related to a decrease in

visceral fat and adipose reactivity [3, 72]. It has been
documented that adiposity during aging contributes to a
number of morbidity factors including insulin
resistance, dyslipidemia, atherosclerosis, hypercoagula-
bility and hypertension [73-74]. However, it is
important to remember that the most inflammation data
are derived from the visceral fat and ectopic fat [72-74].
For example, subcutaneous fat has been observed to
have beneficial effects on lipid and energy homeostasis,
and even counteract the negative effects of visceral
adipose tissue [75]. It is important to note that CR has
beneficial effects in non-obese humans as well as non-
obese rodents [76-77], indicating that decreased
adiposity may not be the only mediator of beneficial
effects of CR. This fact suggests that a decrease in
energy accumulation is more important in the control of
inflammation since this may apply to both obese and
non-obese conditions.

SUMMARY

Energy accumulation induces chronic inflammation.
This view is supported by data from many model
systems of CR and obesity. Inflammation may promote
energy expenditure in a regulatory-feedback manner to
fight against energy surplus (Figure 2). This concept
extends our understanding of biological significance of
inflammation in obesity. It also helps us to understand
why CR reduces inflammation. The inflammation may
act in the peripheral organs/tissues as well as in the
central nervous system to regulate energy balance. In
the peripheral, inflammation induces fat mobilization
and oxidation to promote energy expenditure.
Inflammation may induce energy disposal through
glucose excretion in urine as a result of insulin
resistance and hyperglycemia. In the central,
inflammation may inhibit food intake and activate
neurons for energy expenditure. If this feedback system
is deficient, energy expenditure will be interrupted and
fat will be accumulated in the body for adiposity. We
call this condition of “Inflammation Resistance”. In CR,
the energy accumulation is prevented. In turn, the risk
factors for the chronic inflammation are limited. In our
view, the low inflammation serves as a mechanism for
energy saving in CR.
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