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Abstract: Transient induction of p53 can cause reversible quiescence and irreversible senescence. Using nutlin-3a (a small
molecule that activates p53 without causing DNA damage), we have previously identified cell lines in which nutlin-3a
caused quiescence. Importantly, nutlin-3a caused quiescence by actively suppressing the senescence program (while still
causing cell cycle arrest). Noteworthy, in these cells nutlin-3a inhibited the mTOR (mammalian Target of Rapamycin)
pathway, which is known to be involved in the senescence program. Here we showed that shRNA-mediated knockdown of
TSC2, a negative regulator of mTOR, partially converted quiescence into senescence in these nutlin-arrested cells. In
accord, in melanoma cell lines and mouse embryo fibroblasts, which easily undergo senescence in response to p53
activation, nutlin-3a failed to inhibit mTOR. In these senescence-prone cells, the mTOR inhibitor rapamycin converted
nutlin-3a-induced senescence into quiescence. We conclude that status of the mTOR pathway can determine, at least in
part, the choice between senescence and quiescence in p53-arrested cells.

INTRODUCTION recently reported that in human fibroblasts (WI-38tert)
and fibrosarcoma cells (HT-1080-p21-9), in which
nutlin-3a caused quiescence [16], pS3 acted as a
suppressor of senescence [17]. Thus, ectopic expression
of p21 in these cells caused senescence, while
simultaneous induction of p53 converted senescence
into quiescence [17]. In agreement with previous reports
[18-20], we found that p53 inhibited the mTOR
pathway [17]. Importantly, the mTOR pathway is
involved in cellular senescence [21-26]. We suggested

Depending on the cell type and other factors p53
activation can result in apoptosis, reversible
(quiescence) and irreversible (senescence) cell cycle
arrest [1-8]. While the choice between apoptosis and
cell cycle arrest has been intensively scrutinized, the
choice between quiescence and senescence was not
systematically addressed and remains elusive. In order
to observe whether p53 activation causes either
senescence or quiescence, others and we employed

nutlin-3a. Nutlin-3a, a small molecular therapeutic, that p53-mediated arrest remains reversible as long as
inhibits Mdm2/p53 interaction and induces p53 at p53 inhibits mTOR. If this model is correct, then
physiological levels without causing DNA damage [9- senescence would occur in those cells, in which p53 is
11]. It was reported that nutlin-3a caused senescent incapable of suppressing mTOR. Here we provide
morphology and permanent loss of proliferative experimental evidence supporting this prediction and
potential [12, 13]. However, in other cell lines nutlin-3a demonstrate that irreversibility of p53-mediated arrest
caused quiescence so that cells resumed proliferation, may result from its failure to suppress the mTOR
when nutlin-3a was removed [14-16]. Moreover, we pathway.
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RESULTS
Depletion of TSC2 favors senescence by p53

We have shown that nutlin-3a caused quiescence in HT-
p21-9 cells and WI-38tert cells [16]. In these cells,
nutlin-3a actively suppressed senescence and this
suppression was associated with inhibition of the
mTOR pathway by p53 [17]. Next, we investigated
whether nutlin-3a can cause senescence in cells lacking
tuberous sclerosis 2 (TSC2) (Figure 1A), given that
regulation of mTOR by p53 requires TSC2 [18]. The
transduced cells were transiently treated with nutlin-3a
as shown (Figure 1B). The Tsc2-depleted cells acquired
a large/flat morphology and could not resume
proliferation, whereas cells treated with vector and
nutlin-3a did not become senescent and resumed
proliferation, forming colonies after removal of nutlin-
3a (Figure 1C-D). The potency of shTSC2 with
different sequences varied and two other shTSC2 were
less potent but still depleted TSC2 at some time points
(Supplemental Figure 1) and partially decreased the
proliferative  potential in nutlin-3a-arrested cells
(Supplemental Figure 1).

We next extended this observation to WI-38tert cells
transduced with shTSC2 (Figure 2A). In control, nutlin-
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3a caused a lean morphology, a characteristic of
quiescence [16]. Depletion of TSC2 by shTSC2
converted quiescent morphology to senescent morpholo-
gy (Figure 2B). Furthermore, this was associated with
permanent loss of proliferative potential (Figure 2C). In
control, cells resumed proliferation after removal of
nutlin-3a, whereas nutlin-3a caused permanent loss of
proliferative potential in shTSC2-treated cells (Figure
2C). In agreement with our results, it was previously
observed that knockout of Tsc2 cooperates with p53 in
induction of cellular senescence in MEFs [27].

Nutlin-3 causes senescence in Mel-10 and -9 cells

We next wished to identify senescence-prone cells,
which undergo senescence in response to nutlin-3a.
In MEL-10 and Mel-9, two melanoma-derived cell
lines, nutlin-3a induced p53 and p21 (Figure 3A) and
caused senescent morphology (Figure 3B) and cells
did not resume proliferation, when nutlin-3a was
removed (Supplemental Figure 2). In contrast,
rapamycin did not cause senescent morphology and
cells resumed proliferation, when rapamycin was
removed (Figure 3B and Supplemental Figure 2).
Unlike rapamycin, nutlin-3a did not inhibit S6
phosphorylation (Figure 3A), a marker of rapamycin-
sensitive mTOR activity.

shTSC2

Nutlin (wash 8d)

Figure 1. Depletion of TSC2 converts quiescence into senescence in HT-p21-9 cells. (A) HT-
p21-9 cells were transduced with control lentivirus (pLKO) or lentivirus expressing shTSC2 (sequence #
10) and selected with puromycin for 5 days and then immunoblot was performed. (B) Schema: Testing
the reversibility of nutlin-3a effects. (C) HT-p21-9 cells were transduced with control pLKO or shTSC2
and 5000 cells were plated in 24-well plates and, the next day, were treated with 10 uM nutlin-3a for 3
days. Then nutlin-3a was washed out and the cells were cultivated in fresh medium for 3 days and then
stained for beta-Gal and microphotographed. Bars 50 um. (D) HT-p21-9 cells were transduced with
control pLKO or shTSC2 (and selected for 4 days with puromycin). Then 1000 cells were plated per 60-
mm dishes and, the next day, were treated with nutlin-3a for 3 days. Then nutlin-3a was washed out
and cells were cultivated in fresh medium for 8 days. Colonies were stained with crystal violet.
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Figure 2. Depletion of TSC2 converts quiescence into senescence in WI-
38tert cells. (A) Immunoblot. WI-38tert cells were transduced with shTSC or control
pLKO and cultured for 5 days. (B) WI-38tert cells were transduced with lentiviruses.
Next day, medium was replaced and Nutlin (10 uM) with our without rapamycin was
added. After 4 days cells were washed and stained for beta-Gal. Bars 50 um. (C) WI-
38tert cells were transduced with lentiviruses. Next day, medium was replaced and
Nutlin (10 uM) was added. After 4 days cells were washed and counted after 6 days.
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Figure 3. Effects of nutlin-3a and rapamycin on melanoma cells. (A) Mel-10
and Mel-9 cells were incubated with 10 uM nutlin (N) and 500 nM rapamycin (R) for 1
day and immunoblot was performed. (B) Mel-10 and Mel-9 cells were incubated with
10 uM nutlin and 500 nM rapamycin for 4 days, then drugs were washed out and cells
were incubated for additional 4 days and stained for beta-Gal. Bars 50 um.
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Figure 4. Effect of rapamycin on nutlin-induced senescence in melanoma cells. (A) Mel-10
cells were incubated with 2.5 and 10 uM nutlin with or without 500 nM rapamycin for 1 day
and then immunoblot was performed. (B) Beta-Gal staining. Mel-10 cells were incubated
with 10 M nutlin alone and 500 nM rapamycin for 4 days, then drugs were washed out and
cells were incubated for additional 3 days and stained for beta-Gal. Bars 50 um.

Rapamycin suppresses nutlin-3a-induced senescence

To establish a causal link between mTOR and
senescence, we next investigated whether inhibition of
the mTOR pathway by rapamycin could convert nutlin-
3a-induced senescence into quiescence. Rapamycin did
not affect p53 and p21 induction caused by nutlin-3a
but abrogated S6 phosphorylation (Figure 4A),
associated with conversion from senescent morphology
to quiescent morphology (Figure 4B). Importantly,
cells were capable to resume proliferation following
removal of nutlin-3a and rapamycin, indicating that the
condition was reversible (Figure 4C). Similar results
were obtained with Mel-9 cells (data not shown).

Next, we extended this observation to cells of different
tissue and species origin. As shown previously, nutlin-
3a caused senescence in mouse embryonic fibroblasts
(MEFs) [13]. Here we showed that nulin-3a failed to
inhibit mTOR pathway in MEF (Figure 5A), and caused
senescence (Figure 5 B). Rapamycin inhibited the
mTOR pathway and converted senescent morphology to
quiescent morphology (Figure 5). This suggests that
failure to suppress a rapamycin-sensitive pathway
determines nutlin-3a-induced senescence instead of
quiescence.

DISCUSSION

The role of p53 in organismal aging and longevity is
complex [28-32], indicating that p53 may act as anti-
aging factor in some conditions. We have recently de-
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Figure 5. Effect of rapamycin on nutlin-induced senescence in
melanoma cells. (A) Immunoblot. MEF cells were incubated
with 10 nutlin-3a with or without 10 nM rapamycin for 1 day
and immunoblot using rabbit anti-phospho-S6 (Ser240/244)
and (Ser235/236) and mouse anti-S6 was performed. (B) Beta-
Gal staining. MEF cells were incubated with 10 uM nutlin alone
or with 500 nM rapamycin for 4 days, then drugs were washed
out and cells were incubated for additional 4 days and stained
for beta-Gal. Bars 50 um.
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monstrated that p53 can suppress cellular senescence,
converting it into quiescence [17]. In these quiescence-
prone cells, p53 inhibited the mTOR pathway, which is
involved in senescence program (Figure 6A). Still p53
induces senescence in numerous cell types. Here we
showed that in those cell types, in which nutlin-3a
caused senescence, it failed to inhibit the mTOR
pathway (Figure 6B). The role of active mTOR as a
senescence-inducing factor in these cells was
demonstrated by using rapamycin, which partially
converted nutlin-3a-induced senescence into quiescence
(Figure 6B, lower panel). This indicates that rapamycin-
sensitive mTOR activity is necessary for senescence
during nutlin-3a-induced cell cycle arrest. And vice
versa, in quiescence-prone cells, depletion of TSC2
converted quiescence into senescence (Figure 6A, lower
panel). Taken together, data suggest that activation of
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the mTOR pathway favors senescence (Figure 7). In
agreement, Ras accelerated senescence in nutlin-
arrested cells [13]. Similarly, activation of Ras and
MEK in murine fibroblasts converted p53-induced
quiescence into senescence [33]. Interestingly, p53
levels did not correlate with the senescence phenotype,
suggesting that factors other than p53 may determine
senescence [33]. These important observations are in
agreement with our model that senescence requires two
factors: cell cycle arrest caused by p53 and simul-
taneous activation of the growth-promoting mTOR
pathway (Note: Ras is an activator of the mTOR
pathway). And vice versa it was observed that induction
of p53 maintains quiescence upon serum starvation,
without causing senescence [34]. In agreement, our
model predicts that, by deactivating mTOR, serum
starvation prevents senescence.

Rapa

mTOR

Figure 6. p53 causes senescence by failing to suppress senescence. (A)
Quiescence-prone cells. Upper panel. P53 causes cell cycle arrest and inhibits the
mTOR pathway, thus ensuring quiescence. Lower panel. Transduction of cells with
shTSC2 activates mTOR thus converting quiescence into senescence. (B) Senescence-
prone cells. Upper panel. P53 causes cell cycle arrest without inhibiting the mTOR
pathway, thus ensuring senescence. Lower panel. Rapamycin inhibits mTOR thus

converting senescence into quiescence
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Figure 7. Activation of the mTOR pathway favors senescence in nutlin-3a-arrested cells

Another factor that favors senescence is the duration of
cell cycle arrest [13, 35]. Importantly, the duration of
the arrest may exceed the duration of treatment with
nutlin-3a because of persistent induction of p21 even
after removal of nutlin-3a in some cancer cell lines [35].
Additional pathways may be involved in the senescence
program. For example, nutlin-3a induces cytoskeletal
rearrangement [36]. We speculate that p53 affects not
only rapamycin-sensitive mTORC1 but also the
mTORC2 complex, given that mTORC2 controls the
actin cytoskeleton [37]. Also, p53 inhibits downstream
branches of the mTOR pathway [38, 39]. P53 stimulates
autophagy [18, 40], which in turn is essential for life-
extension by pharmacological manipulations (see [41-
44)). Finally, p53 affects cellular metabolism [45-48]
and this effect may contribute to suppression of cellular
senescence and synergistically potentate metabolic
changes caused by mTOR inhibition. The relative
contribution of all these mutually dependent factors
needs further investigations. The key role of mTOR in
cellular senescence links cellular and organismal aging
and age-related diseases.

MATERIAL AND METHODS

Cell lines and reagents. HT-p21-9 cells are derivatives
of HT1080 human fibrosarcoma cells, where p21
expression can be turned on or off using a

physiologically  neutral  agent  isopropyl--thio-
galactosidase (IPTG) [16, 49-51]. HT-p21-9 cells
express GFP. WI-38-Tert, WI-38 fibroblasts

immortalized by telomerase were described previously
[16, 17]. Melanoma cell lines, MEL-9 (SK-Mel-103)
and MEL-10 (SK-Mel-147), were described previously
[52, 53]. RPE cells were described previously [21, 22].
MEF, mouse fibroblasts isolated from 13-day embryos,
were provided by Marina Antoch (RPCI) and
maintained in DMEM supplemented with 10% FCS.
Rapamycin (LC Laboratories, MA, USA), IPTG (Sigma-

Aldrich, St. Louis, MO), nutlin-3a (Sigma-Aldrich)
were used as previously described [17].
Lentiviral shRNA construction. Bacterial glycerol
stocks [clone  NM_000548.2-1437sl1cl (#10),
NM_000548.x-4581slcl  (#7) and NM_000548.2-
4551slcl (#9)] containing lentivirus plasmid vector
pLKO.1-puro with shRNA specific for TSC2 was
purchased from Sigma. The targeting sequences are:
CCGGGCTCATCAACAGGCAGTTCTACTCGAGTA
GAACTGCCTGTTGATGAGCTTTTTG (#10), CCGG
CAATGAGTCACAGTCCTTTGACTCGAGTCAAAG
GACTGTGACTCATTGTTTTTG (#7) and CCGGCG
ACGAGTCAAACAAGCCAATCTCGAGATTGGCTT
GTTTGACTCGTCGTTTTTG (#9).

pLKO.1-puro lentiviral vector without shRNA was
used as a control. Lentiviruses were produced in
HEK293T cells after co-transfection of lentivirus
plasmid vector with shRNA or control vector with
packaging  plasmids using Lipofectamine2000
(Invitrogen). After 48h and 72h medium containing
lentivirus was collected, centrifuged at 2000g and
filtered through 0.22 uM filter. Filtered virus
containing medium was used for cell infection or
stored at -80 C. Cells were transduced with lentivirus
in the presence of 8 mg/ml polybrene and selected
with puromycin (1-2 mg/ml) for 4-6 days. Cells were
treated with drugs either 24h after transduction or after
puromycin selection for infected cells.

Colony formation assay. Plates were fixed and stained
with 1.0 % crystal violet (Sigma-Aldrich).

Immunoblot analysis. The following antibodies were
used: anti-p53 and anti-p21 antibodies from Cell
signaling and anti-actin antibodies from Santa Cruz
Biotechnology, rabbit anti-phospho-S6 (Ser240/244)
and (Ser235/236), mouse anti-S6, mouse anti-phospho-
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p70 S6 kinase (Thr389), mouse anti-p21, rabbit anti-
phospho-4E-BP1 (Thr37/46) from Cell Signaling;
mouse anti-4E-BP1 from Invitrogen; mouse anti-p53
(Ab-6) from Calbiochem.

Beta-galactosidase staining. beta-Gal staining was
performed using Senescence -galactosidase staining kit
(Cell  Signaling  Technology) according to
manufacturer’s protocol.
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SUPPLEMENTAL FIGURES
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Supplemental Figure 2. Irreversible and reversible effects of
nutlin-3a and rapamycin: Mel-10 and Mel-9 cells were incubated
G ; with 10 uM nutlin (N) and 500 nM rapamycin (R) for 4 day and
#9 B then nutlin-3a was washed. After a week, cells were counted.

Supplemental Figure 1. Depletion of TSC2 converts
quiescence into senescence in HT-p21-9 cells. (A) HT-p21-9
cells were transduced with control lentivirus (pLKO) or lentivirus
expressing shTSC2 (sequence # 7, 8, 9) and selected with
puromycin for 10 days and then immunoblot was performed. (B)
HT-p21-9 cells were transduced with control pLKO or shTSC2
(and selected for 4 days with puromycin). Then 1000 cells were
plated per 60-mm dishes and, the next day, were treated with
nutlin-3a for 3 days. Then nutlin-3a was washed out and cells
were cultivated in fresh medium for 8 days. Colonies were
stained with crystal violet.
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