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Abstract: Members of the signal transducers and activators of transcription (STATs) family of proteins, which connect
cytokine signaling to activation of transcription, are frequently activated in human cancers. Suppressors of cytokine
signaling (SOCS) are transcriptional targets of activated STAT proteins that negatively control STAT signaling. SOCS1
expression is silenced in multiple human cancers suggesting a tumor suppressor role for this protein. However, SOCS1 not
only regulates STAT signaling but can also localize to the nucleus and directly interact with the p53 tumor suppressor
through its central SH2 domain. Furthermore, SOCS1 contributes to p53 activation and phosphorylation on serine 15 by
forming a ternary complex with ATM or ATR. Through this mechanism SOCS1 regulates the process of oncogene-induced
senescence, which is a very important tumor suppressor response. A mutant SOCS1 lacking the SOCS box cannot interact
with ATM/ATR, stimulate p53 or induce the senescence phenotype, suggesting that the SOCS box recruits DNA damage
activated kinases to its interaction partners bound to its SH2 domain. Proteomic analysis of SOCS1 interaction partners
revealed other potential targets of SOCS1 in the DNA damage response. These newly discovered functions of SOCS1 help to
explain the increased susceptibility of Socs1 null mice to develop cancer as well as their propensity to develop autoimmune
diseases. Consistently, we found that mice lacking SOCS1 displayed defects in the regulation of p53 target genes including
Mdm2, Pmp22, PUMA and Gadd45a. The involvement of SOCS1 in p53 activation and the DNA damage response defines a
novel tumor suppressor pathway and intervention point for future cancer therapeutics.

SOCSI, cancer and senescence family of proteins that are recruited to the

phosphorylated cytokine receptors themselves become
Cytokines are secreted proteins that regulate different phosphorylation ~ substrates for JAK  kinases.
cellular processes including survival, proliferation and Phosphorylated STAT proteins homo- or hetero-
differentiation. Following binding to their receptors, dimerize and translocate to the nucleus to activate
cytokines activate the Janus kinases (JAKI, JAK2, transcription of target genes by binding to specific
JAK3 and Tyk2) leading to the phosphorylation of response elements in their promoter regions. Among
tyrosine residues on the cytoplasmic portion of the these cytokine-induced proteins, members of the SOCS
receptor creating docking sites for signaling molecules family constitute important negative regulators of the
containing a SH2 domain [1,2]. Members of the STAT JAK/STAT signaling pathway.
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There are eight members of the SOCS family of
proteins (CIS, SOCS1-7), each of which harbor a
central SH2 domain and a C-terminal SOCS box region
[3] (Figure 1). The suppressor of cytokine signaling
SOCS1 was initially identified as a cytokine-inducible
inhibitor of STAT signaling [4,5,6]. Through its SH2
domain, SOCS1 can directly bind phosphorylated JAK2
to prevent the phosphorylation of STAT. SOCS1 also
possesses a kinase inhibitory region (KIR), a domain
composed of less than 30 amino acids, which shares
homology with the pseudosubstrate inhibitory region of
JAK and leads to inhibition of the catalytic activity of
JAK [7,8]. The SOCS box allows recruitment of elongin
B/C and Cullin 2 to form an ubiquitin E3 ligase
complex [9,10]. This allows the SOCS protein to
operate as an adaptor to trigger ubiquitination and
degradation of proteins involved in cellular signaling
including JAK [11], TEL-JAK2 [12], IRS-1/2 [13],
FAK [14], Vav [15] and Mal [16]. It is currently
thought that SOCS1 contributes to tumor suppression
due to its ability to control and terminate the activation
of STATs [17,18,19,20,21,22,23,24,25]. On the other
hand, the relationship between SOCSI1 and other tumor

suppressor pathways and the cellular mechanisms by
which SOCS1 might exert its tumor suppression remain
largely unexplored.

To prevent the formation of cancer, normal cells
possess intrinsic tumor suppressor mechanisms that are
triggered upon oncogene activation. Like apoptosis,
cellular senescence opposes cellular transformation by
limiting the proliferation of cells expressing oncogenes.
In normal human diploid cells, oncogene activation
causes a permanent growth arrest with features of
cellular senescence [26]. We have recently extended the
list of oncogenes known to trigger the senescence
response to include the JAK/STATS pathway. The
transcription factor STATS is implicated in tumor
formation by regulating important cellular processes
including cell cycle progression, apoptosis,
angiogenesis and metastasis [27]. However, in normal
cells, expression of Tel/Jak2 or constitutively activated
allele of STATS5A and B initiated a cell cycle arrest in
G1 associated with markers of premature cellular
senescence and activation of the tumor suppressors Rb
and p53 [28,29,30].
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Figure 1. The domain architecture of the different members of the SOCS
family of proteins. All eight members of the SOCS family harbor a central SH2 domain
and a C-terminal SOCS box. Both SOCS1 and SOCS3 also contain a kinase inhibitory
region (KIR). The region of SOCS1 interacting with p53 and ATM are shown [34].

www.impactaging.com

446

AGING, July 2010, Vol.2 No.7



SOCS box proteins and the regulation of p53

The activation of the p53 pathway following oncogene
activation is crucial to induce senescence in normal
cells. In mice, stimulation of p53 is dependent on
p19ARF (Alternative Reading Frame), which is induced
by several oncogenes [31,32]. However, the role of
ARF in oncogene-induced senescence in human cells is
still unclear [33]. In order to identify new regulators of

p53 activation following constitutively activated
STATS expression in normal cells, we performed
microarray analysis covering the entire human

transcriptome. We observed that the expression of
SOCSI1 was highly increased at both mRNA and protein
level during STATS5-induced senescence [34].
Unexpectedly, SOCS1 expression in normal human
fibroblasts was sufficient to trigger a p53-dependent cell
cycle arrest displaying features of the senescence
phenotype. This function of SOCS1 was dependent on
the integrity of its SOCS box. In addition, SOCSI1, but
not a mutant lacking the SOCS box domain, led to the
accumulation of phosphorylated p53 on serine 15 and
increased transcription of the p53 target gene p21CIP.
The knockdown of SOCS1 during STATS-induced
senescence reduced the phosphorylation of p53 on
Ser15, diminished the nuclear accumulation of p53 and
compromised the development of senescence phenotype
[34]. The remaining activated p53 and partial bypass of
the senescence response observed following the
knockdown of SOCS1 might arise from the ability of
STATS to engage multiple signaling pathways to ensure
p53 activation. For example, STATS5 can directly
transactivate the promoter of the PML gene and
stimulate its expression in a p53-independent fashion
[30]. The PML protein can then inhibit Mdm2 and
stimulate p53 [35,36] contributing to the senescence
phenotype [37,38].

SOCS1 mediated STATS5-induced senescence via an
unexpected protein-protein interaction between the SH2
domain of SOCSI and the transactivation domain of
p53 [34]. Because the transactivation domain of p53
harbors no tyrosine residues, the binding should occur
independently of tyrosine phosphorylation, as reported
before for SOCS1 binding to Vav [15] and for other
SH2 domains as well [39,40]. The von Hippel-Lindau
protein (VHL), another SOCS box-containing protein,
has been recently shown to interact with p53. This
interaction does not rely on an SH2 domain but on the
SOCS box domain of VHL. However, like SOCSI,
VHL facilitates p53 interaction with the DNA damage
activated kinase ATM [41]. Hence, SOCS1 links DNA
damage signals stimulated by oncogenic activity to p53.

Interestingly, SOCS1 is not the only protein inhibitor
of STAT implicated in the regulation of p53 activity.
The protein inhibitors of activated STAT, PIAS1 and
PIASy both promote the sumoylation and trans-
criptional activity of p53 [42,43,44]. However, the
mechanism of activation of p53 by PIAS is still
unclear. While the sumoylation of p53 by PIAS1 has
been demonstrated [43], a mutated PIAS1 lacking the
RING finger-like domain and defective in promoting
p53 sumoylation was sufficient to activate p53 [44].
Furthermore, by controlling the activity of both p53
and Rb, PIASy regulates Ras-induced senescence and
apoptosis [42]. These data suggest that the control of
STAT signaling is tightly linked to the activation of
p53 to possibly control the JAK/STAT oncogenic
pathway.

Inhibitors of STATSs activity and the DNA damage
response

The stimulation of p53 during oncogene-induced
senescence is associated with the activation of the DNA
damage response [28,45,46]. The DNA damage
observed in mnormal cells expressing activated
oncogenes may be due to reactive oxygen species [47]
and/or some type of replicative stress [45,46]. SOCS1-
induced senescence was accompanied by the activation
of the DNA damage-regulated kinases ATM and Chk2.
Since the stimulation of p53 reporters by SOCS1 was
partially blocked in cells depleted of ATM, ATM might
participate in the SOCS1-dependent activation of p53.
Using pulldown assays, we demonstrated that SOCS1
interacted with both ATM and ATR through its SOCS
box (Figure 1) [34]. ATM is an important mediator of
the senescence response by activating the p53 pathway,
mainly through phosphorylation of the Ser 15 residue
[28,45,46]. Depletion of SOCS1 during STATS-induced
senescence caused a dramatic decrease in Serl5
phosphorylation of p53. In order to form a ternary
complex with p53 and ATM, SOCS1 must localize to
the nucleus. We confirmed that SOCS1 is able to
localize to the nucleus and that endogenous SOCSI
colocalized to DNA damage foci with ATM during
STATS-induced senescence [34], thus reinforcing the
notion that SOCS1 is a mediator of the DNA damage
response. Not only SOCS1 but also other proteins
controlling JAK/STAT signaling are known to localize
to DNA damage sites. PIAS1 and PIAS4 were also
shown to localize to DNA breaks and contribute to the
DNA damage response by sumoylating BRCAT1 [48,49].
Together, these findings strongly suggest a close link
between cytokine signaling and the DNA damage
response.
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Figure 2. Schematic representation of the cell proliferation control exerted by SOCS1. Following
activation of the receptor by cytokine binding, JAK phosphorylates the receptor creating a docking site for
STATs. JAK then phopshorylates STATs causing its release from the receptor, allowing dimerization and
translocation to the nucleus to activate the transcription of specific genes including members of the SOCS
family. Subsequently, SOCS terminates cytokine signaling by blocking JAK activity and STAT recruitment to
the receptor. However, aberrant activation of STATS triggered by oncogenic fusion kinases like TEL-JAK2
might result in sustained levels of SOCS1 that can activate p53 by forming a complex with ATM and p53.

Cytokines, senescence and SOCS1: an emergency
switch to control proliferation

Senescent cells secrete numerous cytokines and other
mediators that modify the tissue microenvironment. The
sum of these secreted factors constitutes what has been
named the senescence-associated secretory phenotype
(SASP) [50]. Among the SASP factors, IL-6 is required
for the oncogene-induced senescence and induction of
the tumor suppressor pl1SINK4B [51]. Furthermore,
persistent, but not transient, DNA damage signaling
triggers the ATM-dependent IL-6 secretion, presumably
to call attention to the presence of damaged cells [52].
During oncogene-induced senescence, IL-6 also
amplifies the secretion of IL-8 [51], which with GROa
activates the CXCR2 receptor to reinforce senescence
[53]. Among the factors secreted by senescent cells,
IGFBP7 [54] and PAI-1 [55] contribute to the growth
arrest response, while p53 regulates expression of
chemokines directing the immune system to permit the
clearance of senescent cells [56]. Collectively, these
reports suggest that cytokine signaling could prevent
tumor formation by promoting cellular senescence.

The capacity of SOCS1 to activate the p53 pathway can
establish an emergency anti-proliferative program in
cells exposed to sustain or aberrant cytokine stimulation
(Figure 2). Following normal activation of the
JAK/STAT pathway, SOCS1 blocks the phospho-
rylation of STAT by inhibiting or degrading JAK2.
However, aberrant and sustained stimulation of STAT
might induce a molecular switch allowing SOCS1 to
localize to DNA breaks and stimulate ATM-dependent
activation of p53.

A general role for SOCS1 in the DNA damage
response

The localization of SOCS1 to DNA breaks during
STAT5-induced senescence raises numerous questions.
First, does the SOCS1 ubiquitin ligase activity
contribute to the DNA damage response? A novel
cascade of ubiquitination controlled by the E3 ubiquitin
ligases RNF8/RNF168 and HERC2 have recently been
reported to control the recruitment of BRCA1 and
53BP1 by ubiquitinating the histones H2A and H2AX
[57,58,59,60,61,62]. The presence of SOCS1 at DNA
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breaks could not only regulate ATM-mediated p53
activation but also control the DNA repair process.
Second, what are the mechanisms underlying the
nuclear transport of SOCS1 and its presence at DNA
damage foci? Since most of its interacting partners were
localized to the plasma membrane, SOCS1 was
considered to be mostly a cytoplasmic protein, but
recent evidences suggest that it can localize to the
nucleus under certain conditions including STATS-
induced senescence [34,63]. A bipartite nuclear
localization signal (NLS) located between the SH2
domain and the SOCS box allows nuclear localization
of SOCS1 [63,64]. However, the mechanism controlling
the active transport of SOCS1 remains unclear. A
clearer understanding of the mechanisms controlling
SOCS1 nuclear localization would be crucial to
determine how SOCS1 mediates its tumor suppressor
activity. Post-translational modifications like
ubiquitination and phosphorylation that have been
shown to control the nuclear localization of p53
[65,66,67] and STAT [68] could also control the
nucleo-cytoplasmic shuttling of SOCS1. Exclusion of
SOCSI from the nucleus would prevent the formation

of the ternary complex with p53 and ATM, preventing
the activation of p53. Furthermore, the phospho-
rylation status of SOCS1 could regulate its activity
since aberrant SOCS1 phosphorylation is associated
with cellular transformation. Actually, phospho-
rylation of SOCS1 triggered by the oncogenic v-Abl
kinase impedes the SOCS1-Elongin B/C interaction,
leading to sustained JAK/STAT signaling [69]. v-Abl
signaling induces multiple serine/threonine kinases
including members of the Pim kinase family. Pim-1
and Pim-2 are required for efficient -cellular
transformation mediated by v-Abl [70] and are able to
phosphorylate SOCS1 and disrupt its binding to
Elongin C [71]. Because SOCSI1 requires the SOCS
box to form a complex with ATM, v-Abl- or Pim
kinase-mediated phosphorylation could potentially
interfere with this interaction and block p53 activation.
Therefore, it appears that aberrant phosphorylation by
oncogenic kinases could interfere with the tumor
suppressor activities of SOCS1 by at least two
different mechanisms: phosphorylated SOCS1 would
not be able to inhibit the JAK/STAT pathway and to
interact with ATM and promote p53 activation.

Table I. Identification of SOCS1 interaction partners by mass spectrometry*

Protein Function

Elongin C Interacts with SOCS box [10]

Elongin B Interacts with SOCS box [10]

Pericentrin Cells depleted of pericentrin enter senescence due to p53

SHC (Src homology 2 domain containing) transforming
protein 1 (SHC1)

Tripartite motif-containing 28 (TRIM28 or KAP1)

5’-nucleotidase, cytosolic II (NT5C2)

BCL2-associated transcription factor 1 (BCLAF1)

Human positive cofactor 4 (PC4)

activation [72]

Member of the Shc protein family of molecular
adaptors, SHC1 promotes apoptosis by its redox
activity. SHCI is implicated in the control of oxidative
stress and life span in mammals [73].

TRIM28 is implicated in transcriptional control through
its interaction with the Kruppel-associated box
repression domain. TRIM28 contributes to DNA repair
mechanisms [74].

NT5C2 hydrolyzes 5-prime-monophosphate (IMP) and
other purine nucleotides. NT5C2 is implicated in the
maintenance of a constant composition of intracellular
purine/pyrimidine nucleotides [75].

BCLAF]1, a transcriptional repressor that interacts with
members of the BCL2 family of proteins, promotes
apoptosis [76].

Suppressor of oxidative mutator phenotype
Accumulates at DNA damage foci [78].

[77].

*For LC-MS/MS analysis, 3XFlag-SOCS1 was overexpressed in U20S cells and immunoprecipitated two days post-transfection
using the anti-Flag M2 Affinity Gel (Sigma). The total immunoprecipitate was send to the Proteomics Core Facility of the Institute
for Research in Immunology and Cancer (IRIC, Montreal, Canada; www.iric.ca) for analysis.
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Finally, the role of SOCS1 as a mediator facilitating the
interactions of ATM and ATR with their targets suggests
that other interaction partners of SOCSI1 could also
become the substrates of ATM/ATR-dependent phospho-
rylation during the DNA damage response. Proteomic
analysis of SOCS1 complexes revealed putative
interactions with several proteins that play a role in the
DNA damage response, apoptosis or oxidative stress
pathways (Table I). Future work will determine which
functions of SOCS1 apply to every one of its interaction
partners:  ubiquitination followed by proteolytic
degradation or DNA damage stimulated phosphorylation.

CONCLUSIONS

Studies on molecular mechanisms underlying cellular
senescence have made significant contributions to the
discovery of novel regulators of tumor suppressor
pathways. Using microarrays or cDNA / siRNA
screens, multiple researchers have identified novel
regulators of p53 or Rb in controlling tumor formation.
Using this approach to study STATS-induced
senescence, we identified SOCS1 as an important
activator of the p53 and the DNA damage response.
Surprisingly, the SOCS box represents a binding motif
for ATM and ATR [34]. To date, about 40 proteins are
known to harbor a SOCS box domain. Clearly further
work will determine whether SOCS box-containing
proteins also participate in the DNA damage response
and control oncogenesis.
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