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p53: Pro-aging or pro-longevity?
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p53 continues to surprise biologists. For nearly a
decade, it was thought to be an oncogene [1, 2], only to
be subsequently declared a potent tumor suppressor [3,
4]. Initially characterized as a transcriptional activator,
we now know p53 is also a transcriptional repressor [5].
And just as it seemed p53 activities were confined to the
nucleus, it became apparent that p53 also functioned in
the cytoplasm to regulate mitochondrial responses [6,
7]. As a tumor suppressor and regulator of hundreds of
genes [5], it was perhaps not surprising that p53 was
shown to regulate numerous cellular processes related
to cancer -- cell cycle progression, apoptosis, cellular
senescence and DNA repair, among others. It was
another surprise, however, to learn that p5S3 might also
regulate aging.

Half a dozen or so years ago, two landmark studies
showed that, in mice, the constitutive expression of
certain pS53 mutants or naturally occurring isoforms
resulted in chronically elevated p53 activity. These
transgenic mice were extraordinarily cancer resistant --
but they showed multiple signs of accelerated aging and
died prematurely [8, 9]. This pro-aging activity of p53
was thought to result from chronic p53-dependent
apoptosis and/or senescence, resulting in cancer-
resistance at the price of tissue atrophy or dysfunction
[10, 11].  Shortly thereafter, though, mice were
engineered with extra copies of the wild-type p53 gene,
and so they showed elevated p53 activity but in a
normally regulated manner. These mice were also
extraordinarily resistant to cancer, but in this case they
showed no signs of accelerated aging and had a normal
life span [12]. Further, transgenic mice that
overexpressed regulated p53 together with its upstream
regulator ARF (p19) were not only cancer resistant but
they lived significantly longer than wild-type controls
[13]. In these models, the regulated hyperactive p53
activity was shown to reduce age-associated DNA
damage and the accumulation of damaged cells.

Together, these studies indicate that p53 can promote or
retard aging, depending on the context of its regulation
and activity.

One obvious mechanism by which p53 might exert both
its pro-aging and pro-longevity effects is by driving cell
fate decisions. As a pro-aging determinant and as
discussed above, p53 might drive excessive apoptosis
and/or cellular senescence. These cell fates can, in turn,
cause tissue atrophy and degeneration (apoptosis) and
loss of tissue renewal or regenerative -capacity
(senescence). As a pro-longevity determinant, p53
might eliminate damaged or dysfunctional cells
(apoptosis) or prevent their proliferation and hence their
ability to form tumors (senescence).

A perhaps less obvious mechanism by which p53 might
promote or retard aging is by altering the systemic or
local tissue milieu. One potentially important p53
target in this regard is the insulin/insulin-like growth
factor (IGF)-1 signaling (IIS) pathway. IIS and one of
its major intracellular targets, the mTOR pathway, drive
aging in diverse species, ranging from yeast to mice
[14]. In general, high IIS/mTOR activity is associated
with cell proliferation, growth and aging, whereas low
IIS/mTOR  activity is associated with somatic
maintenance and longevity. In addition, p53 is
regulated, directly and indirectly (through MDM?2), by
another major component of IIS signaling, the
PKB/AKT kinase [15]. PKB/AKT signaling in turn is
also both pro-aging (through the NF-kB transcription
factor) and pro-longevity (through FOXO transcription
factors) [16].

As is the case for all complex pathways, the precise
phenotypes that are elicited by IIS/mTOR depend on the
strengths of the activating or repressing signals, and on
physiological context. As a pro-aging determinant, p53
might stimulate IIS; conversely, as a pro-longevity
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determinant, it might reduce IIS. So, what is the status
of IIS in mice with elevated p53 activity?
Inconsistently, higher levels of circulating IGF-1 and
tissue-associated IIS are present in both a short- [9] and
long-lived [17] transgenic mouse with elevated p53
activity. Moreover, a second short-lived hyper-p53
mouse model showed reduced IIS, at least in the
mammary gland [18]. Further, IGFBP-3, a secreted
IGF-1 binding protein that inhibits IGF-1 signaling, is a
classic target of p53 transactivation activity [19].
Clearly, whether and to what extent the effects of p53
on aging and longevity are mediated by IIS must be
determined in each of the mouse models, taking into
account the multiple ways in which IIS activity can be
modulated.

A second potentially important p53 target is the
senescence-associated secretory phenotype (SASP). As
discussed above, p53 is an important regulator of
cellular senescence [20], the essentially irreversible
arrest of cell proliferation that occurs in response to
potentially oncogenic stresses [21]. We recently
showed that senescent cells secrete a plethora of
biologically active molecules that can alter the systemic
or local tissue milieu [22, 23]. Of particular
significance, p53 restrained the SASP [22]. That is,
compared to wild-type cells, cells that lacked p53
function secreted markedly higher levels of most of the
SASP components.

A striking feature of the SASP is the prevalence of pro-
inflammatory cytokines [24, 25]. Low level, chronic
inflammation increases with age and is a cause or
substantial contributor to virtually all of the major age-
related diseases [26-29]. The source of this
inflammation is not clear, but one possibility is that it
derives at least in part from senescent cells, which
increase with age [30]. It is tempting to speculate, then,
that p53 might have pro-longevity effects not only
because it suppresses tumorigenesis, but also because it
keeps in check inflammation driven by senescent cells.

It is evident now that p53 can be either pro-aging or
pro-longevity, depending on the physiological context.
The apparent paradox of how p53 modulates life span
will undoubtedly resolve as we understand in greater
detail how p53 and its activities impact specific aging
phenotypes. And in this regard, p53 will likely continue
to surprise biologists.
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