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Abstract: SIRT1 is a NAD ‘dependent deacetylase implicated in longevity and diverse physiological processes. SIRT1, as a
key mediator of beneficial effects of caloric restriction, regulates lipid and glucose metabolism by deacetylating metabolic
regulators, as well as histones, in response to nutritional deprivation. Here we discuss how SIRT1 levels are regulated by
microRNAs (miRs) which are emerging as important metabolic regulators; the recently identified nuclear receptor FXR/SHP
cascade pathway that controls the expression of miR-34a and its target SIRT1; and a FXR/SIRT1 positive feedback
regulatory loop, which is deregulated in metabolic disease states. The FXR/miR-34a pathway and other miRs controlling
SIRT1 may be useful therapeutic targets for age-related diseases, including metabolic disorders.

INTRODUCTION SIRT1: a key regulator in cellular metabolism

Disruption in metabolic homeostasis and over Caloric restriction (CR) was shown to increase life span
accumulation of metabolites, cholesterol, bile acids, and promote survival in yeast, worms, flies, rodents and
triglycerides (fat), or glucose, play causative roles in the perhaps primates [1, 2]. SIRT1 mediates the beneficial
development of metabolic disorders, such as, metabolic effects of CR in an NAD -dependent manner
atherosclerosis and related heart disease, fatty liver, by deacetylating and altering the activities of
obesity, and diabetes. The NAD'-dependent SIRTI transcriptional factors which regulate metabolic genes
deacetylase plays a critical role in maintaining [1, 2, 7]. SIRT1 deacetylates and activates transcript-
metabolic homeostasis which affects aging so that tional ability of metabolic regulators, such as PGC-1a,
SIRT1 increases life spans in most organisms, including p53, Foxo 1, NF-«xB, LXR, and FXR that are involved
mammals [1-3]. Despite extensive studies on SIRT1 in lipid and glucose metabolism, inflammation,
function and its beneficial metabolic effects, how the mitochondrial biogenesis, and energy balance [1, 2, 8-
expression of SIRTI is regulated under normal 12]. In addition, SIRT1 was shown to be recruited to the
conditions and how SIRT1 levels are decreased in promoter of metabolic target genes and suppress their
metabolic disease states remain unclear. In this review, transcription [13, 14]. It was reported that SIRT1 is
we survey recent studies showing how SIRTI1 associated with the promoter of PPARy, a key
expression is regulated at the post-transcriptional level, adipogenic factor, and suppresses PPARYy transcription
focusing on microRNAs (miRs) which have recently by recruiting the corepressors, NcoR1 and SMRT [14].
emerged as important cellular regulators [4-6]. We also SIRT1 was reported to bind to the UCP 2 gene promoter
review recent studies showing that the nuclear receptor and inhibit its transcription in pancreatic p-cells,
FXR/SHP cascade pathway which controls expression resulting in increased ATP production and insulin
of miR-34a and its target SIRT1 in normal conditions secretion [13]. SIRT1 was also shown to improve
and is dysregulated in metabolic disease states. insulin sensitivity by repressing transcription of protein
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tyrosine phosphatase 1B, a major negative regulator of
insulin action, via histone deacetylation [15]. Beneficial
metabolic functions of SIRT1 have been demonstrated
in studies using small molecule activators and
transgenic mice that are null for SIRT1 or overexpress
SIRTI1 [16-20]. The natural compound resveratrol and
the synthetic compound SRT1720 are activators of
SIRT1 and have been shown to ameliorate insulin
resistance, increase mitochondrial content, improve
metabolic profiles, and increase survival in mice fed a
high-fat diet [16-18]. Transgenic mice expressing
SIRT1 were shown to be resistant to body weight gain
and ameliorated insulin resistance and glucose
intolerance in these mice compared to wild-type control
mice [20]. Further, transgenic mice expressing moderate
amounts of SIRT1 were also shown to protect livers
from diet-induced metabolic damage [12, 21].
Consistent with these reports, in liver-specific SIRT1
null mice challenged with a high fat diet, fatty acid
metabolism was altered and the development of fatty
livers and inflammatory responses were promoted [19,
22]. Loss of function studies also showed that SIRT1
decreases endothelial activation in hypercholesterolemic
ApoE-/- mice without affecting endothelium-dependent
vasodilatation [23]. All these recent studies demonstrate
that SIRT1 is a key regulator of cellular metabolism and
mediates beneficial metabolic effects.

MicroRNAs: emerging metabolic regulators

MicroRNAs (miRNAs) are small (approximately 22 nt)
non-coding RNAs that control gene expression [4-6].
MiRs are transcribed from DNA by RNA polymerase II
as hairpin precursors which are further processed to
mature forms [4-6]. MiRs bind to the 3’-untranslated
region (UTR) of target mRNAs and inhibit their
expression by causing mRNA cleavage or inhibition of
translation. Approximately 30% of all human genes are
thought to be regulated by miRs [5, 6] and indeed, miRs
control gene expression in diverse biological processes
including development, differentiation, cell prolifera-
tion, and apoptosis. Recent studies have demonstrated
crucial roles of miRNAs in the regulation of cellular
metabolism [24-32]. MiRs are involved in lipid and
glucose metabolism in major metabolic tissues, such as,
liver, pancreas, adipose, and muscle as summarized in
Table 1. Mir-122 is the most abundant miR in the liver
and plays important roles in a wide variety of liver
functions ranging from cholesterol metabolism, liver
cancer, stress responses, viral infection, to circadian
regulation of hepatic genes [24, 28, 29]. MiR-33 has
been shown to contribute to the regulation of cholesterol
homeostasis by targeting the cholesterol transporter
genes, ABCA1l and ABCGI1 [25, 26]. Our group
recently reported that miR-34a targets hepatic SIRT1

and, interestingly, expression of miR-34a was highly
elevated and SIRT1 levels were decreased in fatty livers
of diet-induced obese mice [30]. MiR-34a was also
shown to suppress insulin secretion in pancreatic -cells
[33]. The roles of miR-375 in pancreatic islet functions,
especially in insulin gene transcription, insulin
secretion, and islet cell growth, are also well established
[31, 32]. Mir-27 and miR-378 were reported to control
adipocyte  differentiation and lipid  synthesis,
respectively [34, 35]. MiR-223 was shown to regulate
glucose uptake in cardiomyocytes and miR-696 to
regulate mitochondria biogenesis and fatty acid
oxidation in gastrocnemius muscle [36, 37]. In line with
their critical functions, miRs are often underexpressed
or overexpressed in disease states [4, 6, 24, 28, 30, 38-
40]. Recent studies have shown that restoring miRs or
downregulating miRs using antisense miR inhibitors,
called antagomirs, has improved transcriptional and
biological outcomes, demonstrating that miRs are
promising therapeutic targets [4, 24, 38].

Down-regulation of SIRT1 by microRNAs

Consistent with its critical roles in diverse biological
processes, the regulation of SIRT1 expression is fine
tuned at multiple levels, including transcriptional, post-
transcriptional, and post-translational levels. The
general regulation of SIRT1 activity and expression has
been thoroughly reviewed in excellent articles [1-3, 41]
and, therefore, this review focuses on the regulation of
SIRT1 expression by miRs (Table 2). MiR-34a was first
identified as a posttranscriptional regulator of SIRT1 in
the regulation of apoptosis under cellular genotoxic
stress in human colon cancer HCT116 cells [42]. MiR-
34a binds to the 3° UTR of SIRT1 mRNA in a partial
complementary manner and represses its translation but
does not affect mRNA degradation [30, 42]. Our group
further reported that miR-34a targets hepatic SIRT1 in
the regulation of cellular metabolism in human
hepatoma HpeG2 cells and in mouse liver in vivo using
adenoviral-mediated overexpression of miR-34a [30].
Remarkably, we observed that miR-34a levels are
highly elevated and SIRT1 protein levels are
substantially decreased in the fatty livers of both diet-
induced obese mice and the leptin-deficient ob/ob mice
[30]. These findings are in line with recent studies
showing that miR-34a is the most elevated miR in livers
exhibiting nonalcoholic steatohepatitis, a spectrum of
nonalcoholic fatty liver diseases in humans [39]. Other
miRs also target SIRTI1. In response to nutritional
availability, miR-132 was shown to downregulate
SIRT1, resulting in activation of inflammatory
pathways in adipose tissues [43]. MiR-199a was
identified as a negative regulator of SIRT1 and HIF1a, a
key mediator of hypoxia [44]. Low oxygen tension
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results in acute downregulation of miR-199a in cardiac
myocytes and in porcine heart and this reduction is
required for upregulation of its targets, HIF-la and
SIRT1 in response to decreased oxygen [44].
Interestingly, a recent study showed that SIRTI
protein levels are much higher in mouse embryonic

stem cells (ESCs) than in differentiated tissues and
that miRNAs, miR-181a and b, miR-9, miR-204, miR-
199b, and miR-135, post-transcriptionally down-
regulate SIRT1 during mouse ESC differentiation and
maintain low levels of SIRTl expression in
differentiated tissues [45].

Table 1. MicroRNAs regulating cellular metabolism in major metabolic tissues

MicroRNA

Direct targets

Functions in Metabolism (references)

Tissues

[putative] (cultured cells)
. ABCAL, .
miR-33 NPC1 Cholesterol homeostasis (25, 26)
miR-34a SIRT1 Lipid metabolism, promotes fatty liver (30) %iverGZ)
Hep
miR-370 Cptla Fatty acid and triglyceride biosynthesis (29)
miR-122 CAT-1 Hepatic lipid metabolism (24, 29)
ADAM17 Circadian gene expression (28)
miR-34a VAMP2 B-cell exocytosis (33) )
) o ) Pancreatic Islets
miR-124a Foxa2 Intracellular signaling in pancreatic -cell (27) (MING, INS-1)
. Regulates catecholamine release
miR-375 MTPN Inhibits insulin secretion (31, 32)
Inhibits adipocyte formation,
miR-27a [PPARY, Down-regulated during adipogenic differentiation
C/EBPq] (34) (Adipocytes, 3T3-
. [Ribosomal Upregulates adipocyte differentiation and lipid L1, 812)
miR-378/378* . .
proteins] synthesis (35)
miR-223 Glut4 Glucose uptake and insulin resistance (36) st
Gastrocnemius
. Muscle metabolism, mitochondria biogenesis and (Cardiomyocyte,
miR-696 [PGCla] fatty acid oxidation (37) C,C10)

Table 2. MicroRNAs targeting SIRT1

MicroRNA Sequences of microRNAs (Sllj)e Biological functions (references)
Hepatic lipid metabolism (30)
miR-34a 5’-uggcagugucuuagcugguugu-3’ 22 Islet B-cell exocytosis (33)
Cell apoptosis (42)
miR-132 5’-uaacagucuacagccauggucg-3’ 22 Stress-induced chemokine production (43)
miR-199a 5’-cccaguguucagacuaccuguuc-3’ 25 Hypoxia preconditioning (44)
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Figure 1. The FXR/SHP pathway controlling miR-34a and SIRT1 expression. Under
normal conditions, activation of FXR signaling induces the metabolic repressor SHP in liver.
SHP is then recruited to the miR-34a promoter and inhibits binding of the key activator p53

to the DNA, resulting in decreased miR-34a expression.
In contrast, under pathophysiological conditions such as

increased hepatic SIRT1 levels.

Inhibition of miR-34a results in

fatty livers of obese mice, the dysregulated FXR/SHP pathway due to highly elevated FXR
acetylation no longer inhibits transcription of miR-34a. The dysregulated FXR/SHP pathway,
along with acetylation of p53 due to cellular stress under metabolic disease states, result in
elevated miR-34a expression, which contributes to decreased SIRT1 levels.

A novel FXR/SHP/miR-34a pathway controlling
SIRT1 levels

The nuclear bile acid receptor, Farnesoid X Receptor
(FXR), plays an important role in maintaining lipid and
glucose levels by regulating expression of numerous
metabolic genes mainly in the liver and intestine [46].
Consistent with its important metabolic functions,
disruption of the FXR gene in transgenic mice was
associated with metabolic  diseases, including
hypercholesterolemia, cholesterol gallstone disease,
fatty liver, and type 2 diabetes [46-49]. Activation of
FXR in diabetic obese mice improved metabolic
outcomes by reducing serum glucose and lipid levels
[50]. Although both FXR and SIRT1 have been shown
to be critical for hepatic metabolism and activation of
both proteins improves metabolic outcomes in diet-
induced obese mice [17, 18, 46, 47, 50], it was
unknown whether the expression and activity of these
two proteins are coordinately regulated. In recent
studies, we found that FXR positively regulates hepatic
SIRT1 expression by inhibiting expression of miR-34a
[30]. As shown in Figure 1, under normal conditions,
miR-34a levels are down-regulated by a nuclear
receptor cascade pathway involving FXR and orphan
nuclear receptor and metabolic repressor, Small
Heterodimer Partner (SHP) [51, 52]. Upon induction by
activated FXR, SHP is recruited to the miR-34a promo-

ter and suppresses its transcription by inhibiting the
promoter occupancy of p53, the key activator of the
miR-34a gene [53]. Subsequently, inhibition of miR-
34a contributes to increased expression of SIRT1. This
FXR/SHP pathway was also shown to play a crucial
role in the regulation of hepatic bile acid synthesis by
inhibiting the rate-limiting bile acid synthetic enzyme
CYP7A1 [51, 52] and to suppress fatty liver formation
by inhibiting the key lipogenic activator SREBP-1c
[54]. Our group has identified molecular mechanisms
by which SHP inhibits its target genes by coordinately
recruiting chromatin modifying repressive cofactors,
including HDACs, G9a metyltransferase, and Brm-
containing Swi/Snf remodeling complex [55-57].
Consistent with these previous findings, we observed
recruitment of HDACs to the miR-34a promoter in
mouse liver after treatment with the synthetic FXR
agonist, GW4064 (not shown). In contrast, in fatty
livers of obese mice, the FXR/SHP pathway is
dysregulated such that miR-34a levels are highly
elevated, which contributes to reduced SIRTI1 levels
[30]. Interestingly, activation of FXR signaling in obese
mice by daily treatment with GW4064 for 5 days or by
hepatic expression of FXR using adenoviral delivery
decreased miR-34a levels and restored SIRT1 levels
[30]. Consistent with a critical role for FXR in
positively controlling SIRT1 through the inhibition of
miR-34a, miR-34a levels were indeed elevated and
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SIRT1 protein levels are substantially decreased in FXR
null mice [30]. Our findings suggest an intriguing link
among FXR activation, decreased miR-34a levels,
increased SIRT1 levels, and beneficial metabolic
outcomes.

A positively interacting FXR/SIRT1 regulatory loop

In the FXR/SHP/miR-34a pathway, FXR positively
regulates hepatic SIRT1 levels by inhibiting
transcription of the miR-34a gene. These findings,
along with previous studies showing the p53/miR-
34a/SIRT1 feedback loop [42, 58], suggest intriguing
regulatory loops controlling SIRT1 expression (Figure
2). In the short regulatory loop, SIRT1 positively auto-
regulates its own expression by deacetylating p53 and
histones at the miR-34a promoter, resulting in
suppression of miR-34a [9, 30, 42, 53, 58]. In the long
regulatory loop, SIRT1-mediated deacetylation of FXR
increases FXR’s transactivation ability by increasing
binding of the FXR/RXR heterodimer to DNA resulting
in induction of SHP and repression of miR-34a
expression [11, 30]. We observed that FXR acetylation
is dynamically controlled by p300 acetylase and SIRT1

deacetylase under normal conditions, and remarkably,
FXR acetylation levels are highly elevated in fatty livers
of obese mice [11]. Interestingly, treatment daily with
the SIRT1 activator resveratrol for 1 week or
adenoviral-mediated hepatic expression of SIRTI
substantially reduced FXR acetylation with beneficial
metabolic effects [11]. These results are consistent with
the idea that the transactivation activity of FXR is low
in obese mice due to highly elevated FXR acetylation,
which contributes to increased expression of miR-34a.
Subsequently, elevated miR- 34a suppresses expression
of SIRT1, which then further decreases FXR activity,
resulting in a vicious FXR/miR-34a/SIRT1 regulatory
loop in metabolic disease states. In addition to
deacetylation of FXR, SIRT1 has been implicated as a
positive regulator of the expression and activity of FXR.
During fasting, PGC-lo was shown to increase
expression of the FXR gene and function as a
coactivator of FXR [59]. Since SIRT1 deacetylates and
increases PGC-la activity [8], SIRT1 should increase
FXR expression and activity by enhancing PGC-la
activity. All these recent studies strongly suggest that
the expression and activity of these two proteins are
mutually and coordinately regulated.

A FXR/miR-34a/SIRT1 regulatory loop

C:

suve,
o

5 o
@i“’

p53 deacetylation

f FXR transactivation potential by FXR deacetylation

Figure 2. A FXR/SIRT1 positive-feedback regulatory loop. The expression and activity
of FXR and SIRT1 are mutually and coordinately regulated. SIRT1 positively auto-regulates
its own expression by inhibiting miR-34a via deacetylation (as indicated by dotted circles) of
p53 and histones at the miR-34a promoter (short loop) and by increasing transactivation
potential of FXR via deacetylating the FXR (long loop). SIRT1 also increases FXR expression
and activity via deacetylation of PGC-1a.. FXR in turn positively regulates hepatic SIRT1
expression by inhibiting miR-34a which targets SIRT1.
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Concluding remarks

Because of SIRT1’s anti-aging properties and its
beneficial effects on a wide range of age-related disease
[1-3, 21], it has been intensively studied. SIRT1 levels
were reported to be decreased in liver, muscle, and
adipose tissues of diet-induced obese mice in vivo as
well as in cultured cell models of insulin resistance [15,
30, 60], but the underlying mechanisms remain unclear.
The discovery of the FXR/miR-34a pathway controlling
SIRT1 levels provides a partial explanation since
elevated miR-34a levels in obese mice contribute to
decreased SIRT1 levels [30]. Based on these findings,
together with the development of effective inhibitors of
miRs, the antagomirs [4, 24, 38], it will be interesting to
see whether the reduction of elevated miR-34a in fatty
livers of obesity improves transcriptional profiles of
metabolic genes and metabolic outcomes. Also, it will
be important to understand how the FXR/SIRT1
regulatory network is dysregulated in metabolic disease
states which likely involves altered cellular kinase
signaling pathways that post-transcriptionally affect
SIRT1 and FXR levels and activities. Development of
drugs that target the FXR/miR-34a pathway and other
miRs controlling SIRT1 expression may lead to novel
therapeutic options for treating age-related metabolic
disease including fatty liver, obesity and type II diabetes.
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