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Abstract: We recently found that lithocholic acid (LCA), a bile acid, extends yeast longevity. Unlike mammals, yeast do not
synthesize bile acids. We therefore propose that bile acids released into the environment by mammals may act as
interspecies chemical signals providing longevity benefits to yeast and, perhaps, other species within an ecosystem.

Bile acids delay aging in yeast via two different
mechanisms

We recently found that LCA greatly (and some other
bile acids to a lesser degree) increases the chronological
life span of yeast under caloric restriction (CR)
conditions [1]. Our findings provided evidence that
LCA extends longevity of chronologically aging yeast
through two different mechanisms (Figure 1).

In one mechanism, this bile acid targets longevity
pathways that control chronological aging irrespective
of the number of calories available to yeast. Because
these pathways modulate longevity regardless of calorie
availability, we called them “constitutive” or
“housekeeping” [1]. LCA modulates these house-
keeping longevity assurance pathways by suppressing
lipid-induced necrosis, attenuating mitochondrial
fragmentation, altering oxidation-reduction processes in
mitochondria, enhancing resistance to oxidative and
thermal stresses, suppressing mitochondria-controlled
apoptosis, and enhancing stability of nuclear and
mitochondrial DNA ([1]; Figure 1C). The housekeeping
longevity pathways do not overlap with the TOR (target
of rapamycin) and cAMP/PKA (cAMP/protein kinase
A) signaling pathways ([1]; Figure 1A), both of which
are “adaptable” by nature because they are under the

stringent control of calorie and/or nutrient availability
([2-6]; Figure 1B).

In the other mechanism, LCA targets the adaptable
cAMP/PKA pathway by unmasking an anti-aging
potential of PKA under non-CR conditions, perhaps by
activating PKA-dependent phosphorylation of the
cytosolic pool of the key nutrient-sensory protein kinase
Rim15p [1]. The phosphorylation of Rim15p by PKA
inactivates its protein kinase activity [7]. Hence, the
LCA-driven inactivation of Rim15p may reduce the
phosphorylation status of its known [8] target proteins
in the cytosol, thereby lowering their pro-aging efficacy
([1]; Figure 1A).

Bile acids are beneficial to health and longevity in
animals

Although bile acids in mammals have been traditionally
considered only as trophic factors for the enteric
epithelium and detergents for the emulsification and
absorption of dietary lipids [9-11], they are now also
recognized for their essential role as signaling
molecules regulating lipid, glucose and energy
homeostasis and activating detoxification of xenobiotics
([9-14]; Figure 2A). Many of the numerous health-
improving metabolic effects caused by bile acids and
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their demonstrated ability to protect mammals from
xenobiotic toxins ([9-14]; Figure 2A) suggest that, by
improving overall health, these amphipathic molecules
may delay the onset of age-related diseases and have
beneficial effect on longevity. Furthermore, because of
the elevated levels of several bile acids in the long-lived
Ghrhr™ mice and due to the ability of cholic acid
administered to food of wild-type mice to activate
transcription of numerous xenobiotic detoxification
genes, it has been proposed that, by promoting chemical
hormesis in mammals, these mildly toxic molecules
with detergent-like properties may extend their
longevity by acting as endobiotic regulators of aging
[15-18]. Moreover, bile acid-like dafachronic acids
(including 3-keto-LCA) in worms function as endocrine
regulators of aging by activating an anti-aging
transcriptional program governed by the DAF-12/DAF-
16 signaling cascade ([19-21]; Figure 2B). Altogether,
these findings support the notion that bile acids are
beneficial to health and longevity in animals because of
their ability to operate as potent signaling molecules that
modulate a compendium health- and longevity-related
processes. Noteworthy, by modulating many of these
processes also in yeast, LCA extends their longevity [1].
It is likely therefore that the life-extending capacity of
LCA and other bile acids as well as, perhaps, the
mechanisms underlying their anti-aging action are
conserved across animal species and other phyla.

Bile acids may function as interspecies chemical
signals extending yeast longevity within ecosystems

Importantly, yeast do not synthesize LCA or any other
bile acid found in mammals [1,11,22]. We therefore
hypothesize that bile acids released into the
environment by mammals may act as interspecies
chemical signals providing longevity benefits to yeast.
In our hypothesis, these mildly toxic compounds
released into the environment by mammals may create
selective pressure for the evolution of yeast species that
can respond to the resulting mild cellular damage by
developing the most efficient stress protective
mechanisms. Such mechanisms may provide effective
protection of yeast not only against cellular damage
caused by bile acids (and, perhaps, by other
environmental xenobiotics) but also against molecular
and cellular damage accumulated with age. In our
hypothesis, yeast species that have been selected for the
most effective mechanisms providing protection against
bile acids (and other environmental xenobiotics) are
expected to evolve the most effective anti-aging
mechanisms that are sensitive to regulation by bile acids
(and, perhaps, by other environmental xenobiotics).
Thus, the ability of yeast to sense bile acids produced
by mammals and then to respond by undergoing certain

life-extending changes to their physiology (Figure 1) is
expected to increase their chances of survival, thereby
creating selective force aimed at maintaining such ability.

Natural variations of bile acid levels within
ecosystems may modulate both housekeeping and
adaptable longevity pathways in yeast

Noteworthy, the bulk quantity of bile acids in mammals
exists as an organismal pool which cycles between
intestine and liver in the enterohepatic circulation due to
the efficient reabsorption of bile acids in the terminal
ileum [10,11]. However, about 5% (up to 600 mg/day)
of this pool escapes each reabsorption cycle, being
continuously released into the large intestine and
ultimately into the environment [10,11]. Thus, yeast are
permanently exposed to bile acids due to their fecal loss
by mammals. It is conceivable therefore that, in yeast
exposed to bile acids released by mammals, these
interspecies chemical signals modulate housekeeping
longevity assurance pathways that 1) regulate yeast
longevity irrespective of the state of the environment or
food supply (i.e., the number of available calories and
nutrients); and 2) do not overlap (or only partially
overlap) with the adaptable TOR and cAMP/PKA
longevity pathways that are under the stringent control
of calorie and nutrient availability.

It should be stressed, however, that the quantity of
bile acids released into the environment by mammals
could vary due to changes in the density of
mammalian population and, perhaps, due to other
environmental factors (including the abundance of
food available to mammals, its nutrient and caloric
content, and its fat mass and quality). In fact, the
organismal pool of bile acids in mammals is under the
stringent control of regulatory mechanisms operating
in the liver during the fasting-refeeding transition [9-
11]. Hence, it is likely that, in addition to the ability of
yeast to respond to the permanently available
exogenous pool of bile acids by modulating some
housekeeping longevity assurance pathways, they have
also evolved the ability to sense the environmental
status-dependent variations of bile acids abundance by
modulating the adaptable TOR and cAMP/PKA
longevity pathways. Importantly, our recent study
provided evidence for two mechanisms underlying the
life-extending effect of LCA in yeast; one mechanism
involves the calorie supply-independent modulation of
a compendium of housekeeping longevity assurance
processes that are not regulated by the TOR and
cAMP/PKA pathways, whereas the other mechanism
operates only in yeast on a calorie-rich diet by
unmasking the previously unknown anti-aging poten-
tial of the calorie supply-dependent PKA [1].
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Figure 1. Lithocholic acid (LCA) extends longevity of chronologically aging yeast through two different mechanisms.
(A and B) Outline of pro- and anti-aging processes that are controlled by the TOR and/or cAMP/PKA signaling pathways and are
modulated by LCA in yeast cells grown under non-CR (A) or CR (B) conditions. Activation arrows and inhibition bars denote pro-
aging (displayed in green color) or anti-aging (displayed in red color) processes. Under both non-CR and CR conditions, LCA targets
housekeeping longevity assurance processes listed in (C). Under non-CR conditions only, LCA also targets the adaptable cAMP/PKA
pathway. By activating PKA-dependent phosphorylation of the cytosolic pool of the key nutrient-sensory protein kinase Rim15p,
LCA causes the inactivation of Rim15p. The resulting reduction of the phosphorylation status of several Rim15p target proteins in
the cytosol lowers their pro-aging efficacy. Abbreviations: CR, caloric restriction; PM, plasma membrane.
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It remains to be seen if our hypothesis on the essential
role of bile acids as interspecies chemical signals
regulating longevity in yeast is applicable to other
species routinely exposed to bile acids within an
ecosystem, such as plants and bacteria.

Rapamycin may also act as an interspecies chemical
signal modulating longevity at the ecosystemic level

Our hypothesis on longevity regulation by bile acids
within ecosystems may explain the evolutionary origin
of the life-extending effect of another anti-aging
compound, called rapamycin. Synthesized by soil
bacteria to inhibit growth of fungal competitors, this
macrocyclic lactone provides longevity benefit to yeast,
fruit flies and mice by specifically inhibiting TOR
(Torlp in yeast), a nutrient-sensory protein kinase that
operates as a master negative regulator of the key
adaptable longevity pathway [3,4,23-25]. Because
rapamycin delays proliferative growth of organisms
across phyla by causing G1 cell cycle arrest [3,4,26], it
could be considered as a mildly cytotoxic compound,
akin to bile acids (Our recent unpublished data revealed
that rapamycin is a more toxic hormetic molecule than
LCA and other bile acids). We propose therefore that,
following its release into the environment by soil
bacteria, rapamycin may create selective pressure for
the evolution of yeast, fly and mammalian species that
can respond to rapamycin-induced growth retardation
by developing certain mechanisms aimed at such
remodeling of their anabolic and catabolic processes
that would increase their chances of survival under
conditions of slow growth. It is plausible that some of
these mechanisms delay aging by optimizing essential
longevity-related processes and remain sensitive to
modulation by rapamycin. Hence, the ability of yeast,
fruit flies and mice to sense rapamycin produced by soil
bacteria and then to respond by undergoing certain life-
extending changes to their physiology is expected to
increase their chances of survival, thereby creating
selective force for maintaining such ability.

Interestingly, rapamycin has been shown to increase life
span in fruit flies under dietary restriction conditions
[25], when the TOR-governed adaptable pro-aging
pathways are fully suppressed and the TOR-governed
adaptable anti-aging pathways are fully activated [3,4].
It is plausible therefore that - similar to the proposed
above anti-aging mechanism of LCA in yeast -
rapamycin in fruit flies can modulate both the
housekeeping (TOR-independent) and adaptable (TOR-
dependent) longevity pathways. Hence, it is tempting to
speculate that, in addition to the ability of fruit flies to
respond to the permanently available exogenous pool of
rapamycin by modulating some housekeeping longevity

assurance pathways, they have also evolved the ability
to sense the environmental status-dependent variations
of rapamycin abundance (due to, e.g., changes in the
density of soil bacteria population) by modulating the
TOR-governed adaptable longevity pathways. Of note,
recent findings in yeast imply that - in addition to its
role as a master negative regulator of the key adaptable
longevity pathway - Torlp may also operate as a
positive longevity regulator, in particular by stimulating
nuclear import of the transcriptional factors Sfplp, Rtgl
and Rtg3 in response to partial mitochondrial
dysfunction or changes in the exogenous and
endogenous levels of glutamate and glutamine [27-29].
The ability of these transcriptional factors to regulate
metabolism, ribosome biogenesis and growth is crucial
for longevity [28,30,31].

The “xenohormesis” hypothesis: a of
xenohormetic phytochemicals

case

Our hypothesis on longevity regulation by bile acids
and rapamycin within ecosystems complements the
“xenohormesis” hypothesis, in which plants and other
autotrophic organisms respond to various environmental
stresses (i.e., UV light, dehydration, infection,
predation, cellular damage and nutrient deprivation) by
synthesizing a compendium of secondary metabolites
[32-34]. Within plants and other autotrophs producing
these phytochemicals in response to environmental
stresses, they activate defense systems protecting the
host organisms against such stresses. In addition, these
phytochemicals constitute a chemical signature of the
environmental status of an ecosystem. As such, they
provide to heterotrophic organisms (i.e., animals and
fungi) within the ecosystem an advance warning about
deteriorating environmental conditions [33]. By
operating as interspecies chemical signals, they could
create selective pressure for the evolution of
heterotrophic organisms that can sense these signals and
then to respond by altering their metabolism in
defensive preparation for the imminent adversity while
conditions are still favorable. The resulting metabolic
remodeling causes such specific changes in physiology
of heterotrophs that are beneficial to their health and
longevity [33]. Although xenohormetic
phytochemicals are produced by autotrophic organisms
only in response to hormetic environmental stresses, it
is unlikely that they function as mildly toxic hormetic
molecules within heterotrophic organisms; rather, the
xenohormesis hypothesis proposes that the beneficial
to health and longevity effects of xenohormetic
phytochemicals are due to their well known ability to
modulate the key enzymes of stress-response pathways
governing numerous longevity-related processes in
heterotrophic organisms [33-42]. The xenohormetic
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mode of positive selection for the most efficient
longevity regulation mechanisms has been proposed to
be driven by such phytochemicals as resveratrol,
butein, fisetin and other polyphenols, as well as by
curcumin [32-34]. The ability of caffeine to increase
yeast chronological life span by decreasing the catalytic

activity of Torlp [43] suggests that this xanthine
alkaloid could also operate as a xenohormetic
phytochemical signal providing an advance warning
about deteriorating environmental conditions to yeast,
thereby driving the evolution of their longevity
regulation mechanisms.
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Figure 2. Bile acids are beneficial to health and longevity in animals. (A) In mammals, bile acids (BA) function not only as
trophic factors for the enteric epithelium and detergents for the emulsification and absorption of dietary lipids, but also as signaling
molecules that regulate lipid, glucose and energy homeostasis and activate detoxification of xenobiotics. By improving overall
health, BA may delay the onset of age-related diseases and have beneficial effect on longevity. By activating transcription of
numerous xenobiotic detoxification genes and thus promoting chemical hormesis, BA may extend their longevity by acting as
endobiotic regulators of aging. (B) In worms, following their synthesis from cholesterol in the intestine, hypodermis, spermatheca
and sensory neurons, bile acid-like dafachronic acids (DCA) are delivered to other tissues where they activate the DAF-12/DAF-16
signaling cascade, thereby orchestrating an anti-aging transcriptional program and increasing the life span of the entire organism.
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Figure 3. The xenohormetic, hormetic and cytostatic selective forces may drive the evolution of longevity regulation
mechanisms within an ecosystem. We propose that organisms from all domains of life within an ecosystem synthesize chemical
compounds that 1) are produced and then released into the environment permanently or only in response to deteriorating
environmental conditions, increased population density of competitors and/or predators, or changes in food availability and its nutrient
and/or caloric content; 2) are mildly toxic compounds that trigger a hormetic response in an organism that senses them or,
alternatively, are not toxic for any organism within the ecosystem and do not cause a hormetic response; 3) are cytostatic compounds
that attenuate the TOR-governed signaling network or, alternatively, do not modulate this growth-promoting network; and 4) extend
longevity of organisms that can sense these compounds (red arrows), thereby increasing their chances of survival and creating selective
force aimed at maintaining the ability of organisms composing the ecosystem to respond to these compounds by undergoing specific
life-extending changes to their physiology. In our hypothesis, the evolution of longevity regulation mechanisms in each group of the
organisms composing an ecosystem is driven by the ability of this group of organisms to undergo specific life-extending changes to their
physiology in response to a compendium of “critical” chemical compounds that are permanently or transiently released to the
ecosystem by other groups of organisms. Abbreviations: LCA, lithocholic acid; DCA, bile acid-like dafachronic acids.
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The “anti-aging side effect” hypothesis: delaying
aging by attenuating the growth-promoting TOR
signaling pathway

A common feature of many anti-aging compounds -
some of which are mildly toxic hormetic molecules,
whereas the others are non-toxic xenohormetic
phytochemicals - is that they exhibit a cytostatic effect
by inhibiting TOR, a nutrient-sensing signaling pathway
that promotes proliferative growth in all heterotrophic
organisms. A recently proposed “anti-aging side effect”
hypothesis envisions that the primary objective for the
synthesis of these cytostatic compounds by a group of
the organisms composing an ecosystem is to suppress
growth of other group(s) of organisms within this
ecosystem, thereby killing competitors and/or protecting
themselves from predators [39]. Due to its central role
in promoting proliferative growth of all heterotrophic
organisms, the TOR signaling pathway is a preferable
target of such cytostatic compounds [3,26,39,44,45].
Because the TOR pathway provides a molecular link
between growth and aging by driving a so-called quasi-
programmed aging [3,44,45], these compounds exhibit
a side effect of suppressing aging [39]. In fact, soil
bacteria synthesize rapamycin to suppress growth of
fungal competitors by inhibiting the TOR protein
kinase, a master positive regulator of the TOR signaling
pathway that drives developmental growth of young
organisms [3,23-25]. However, since - according to the
anti-aging side effect hypothesis - in heterotrophic
organisms across phyla this pathway also drives aging
after their developmental growth is completed [44,45],
rapamycin has a side effect of suppressing aging of all
groups of heterotrophic organisms within an ecosystem
[39]. Moreover, the anti-aging side effect hypothesis
predicts that plants synthesize resveratrol in part to
protect their grapes by inhibiting fungal growth [39].
Yet, because this small polyphenol attenuates the TOR
signaling pathway by modulating key upstream
regulators and downstream targets of the TOR protein
kinase [35-42], resveratrol also displays a side effect of
slowing down quasi-programmed TOR-driven aging of
various species of heterotrophic organisms within an
ecosystem [39].

In the anti-aging side effect hypothesis, cytostatic
compounds attenuating the TOR pathway operate as
interspecies chemical signals that provide longevity
benefits to a range of heterotrophic organisms
composing an ecosystem [39]. We propose that,
following their release into the environment by soil
bacteria or plants, these growth suppressing chemical
compounds may create selective pressure for the
evolution of yeast, worm, fly and mammalian species
that can respond to the resulting retardation of their

growth by developing certain mechanisms aimed at
specific remodeling of the TOR-governed signaling
network. By targeting the TOR protein kinase itself
and/or its numerous upstream regulators and
downstream targets, such mechanisms may attenuate
the hyper-activation of TOR-governed cellular signaling
pathways and cellular functions that - according to the
concept of quasi-programmed TOR-driven aging
[44,45] - are initiated after developmental growth of a
heterotrophic organism is completed. In our hypothesis,
the species of heterotrophic organisms that have been
selected for the most efficient mechanisms preventing
the hyper-activation of TOR-governed cellular signaling
pathways and cellular functions following the
completion of developmental growth are expected to
evolve the most effective anti-aging mechanisms. Such
mechanisms may be sensitive to various environmental
factors, including the density of organism population
and abundance of nutrients within an ecosystem.

The xenohormetic, hormetic and cytostatic selective
forces may drive the evolution of longevity
regulation mechanisms within ecosystems

Unlike xenohormetic phytochemicals that are non-toxic
compounds transiently synthesized and released by
autotrophs only in response to environmental stresses
[33,34], bile acids are mildly toxic hormetic molecules
that are permanently synthesized and released by
mammals [9-11,14-18]. Furthermore, rapamycin is a
more toxic hormetic molecule than bile acids (our
unpublished data) that is permanently synthesized and
released by soil bacteria [46]. Moreover, many
xenohormetic  phytochemicals and mildly toxic
hormetic molecules exhibit a cytostatic effect by
attenuating TOR-governed cellular signaling pathways
and cellular functions [39]. Therefore, by fusing the
xenohormesis hypothesis [32-34], the anti-aging side
effect hypothesis [39] and the proposed here hypothesis
on longevity regulation by bile acids and rapamycin
within ecosystems, we put forward a unified hypothesis
of the xenohormetic, hormetic and cytostatic selective
forces driving the evolution of longevity regulation
mechanisms at the ecosystemic level.

In our unified hypothesis (Figure 3), organisms from all
domains of life (i.e., bacteria, fungi, plants and animals)
within an ecosystem are able to synthesize chemical
compounds that 1) are produced and then released into
the environment permanently or only in response to
deteriorating environmental conditions, increased
population density of competitors and/or predators, or
changes in food availability and its nutrient and/or
caloric content; 2) are mildly toxic compounds that
trigger a hormetic response in an organism that senses
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them or, alternatively, are not toxic for any organism
within the ecosystem and do not cause a hormetic
response; 3) are cytostatic compounds that attenuate the
TOR-governed signaling network (e.g., rapamycin and
resveratrol) or, alternatively, do not modulate this
growth-promoting network (e.g., LCA and other bile
acid) and 4) extend longevity of organisms that can
sense these compounds, thereby increasing their
chances of survival and creating selective force aimed at
maintaining the ability of organisms composing the
ecosystem to respond to these compounds by
undergoing specific life-extending changes to their
physiology. Our hypothesis implies that the evolution of
longevity regulation mechanisms in each group of the
organisms composing an ecosystem is driven by the
ability of this group of organisms to undergo specific
life-extending physiological changes in response to a
compendium of “critical” chemical compounds that are
permanently or transiently released to the ecosystem by
other groups of organisms.

Verification of our hypothesis

As the first step towards testing the validity of our
hypothesis of the xenohormetic, hormetic and cytostatic
selective forces driving the evolution of longevity
regulation mechanisms within ecosystems, we are
currently carrying out the LCA-driven experimental
evolution of longevity regulation mechanisms in
chronologically aging yeast cultured under laboratory
conditions. If we could select long-lived yeast species
following a long-term exposure of wild-type yeast to
LCA, we would be able to begin addressing the
following intriguing questions: 1) what genes are
affected by mutations responsible for the extended
longevity of selected long-lived yeast species? 2) how
these mutations influence a compendium of the
housekeeping longevity-related processes modulated by
LCA in chronologically aging yeast ([1]; Figure 1); 3)
will these mutations affect the growth rate of yeast in
media with or without LCA? 4) will selected long-lived
yeast species be able to maintain their ability to live
longer than wild-type yeast if they undergo several
successive passages in medium without LCA? - and,
thus, is there selective pressure aimed at maintaining of
an “optimal” rather than a “maximal” chronological life
span of yeast (due to, e.g., a proposed selective
advantage of the envisioned “altruistic” program [47-
52] of chronological aging in yeast)? and 5) if mixed
with an equal number of wild-type yeast cells, will
selected long-lived yeast species out-grow and/or out-
live them in medium without LCA or the opposite will
happen (due to selective pressure on yeast aimed at
maintaining of the so-called “altruistic” program [47-
52] of their chronological aging)?
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