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Abstract: The results of genome—wide association studies of complex traits, such as life span or age at onset of chronic
disease, suggest that such traits are typically affected by a large number of small-effect alleles. Individually such alleles
have little predictive values, therefore they were usually excluded from further analyses. The results of our study strongly
suggest that the alleles with small individual effects on longevity may jointly influence life span so that the resulting
influence can be both substantial and significant. We show that this joint influence can be described by a relatively simple
“genetic dose — phenotypic response” relationship.

The genome wide association studies (GWAS) were nificance alleles. Using longevity trait as an example we
introduced to perform exhaustive analyses of genetic show that the results of our analyses bring important
influence on complex traits. A number of recent insights into mechanisms of genetic regulation of this
publications emphasize that the approach did not trait. In this approach we hypothesized that value of the
entirely meet the expectations: Although GWAS complex trait (life span) depends on number of the
provided important insights in genetics of particular small-effect “longevity” alleles, contained in individual
disorders [1], it failed to detect a major portion of genomes and tested this hypothesis using genome wide
genetic influence on traits of interest [1-5]. In most data on 550K SNPs from the original cohort of the
cases genetic variants found in GWAS cannot explain Framingham Heart Study (FHS). The results show that
heritability estimates calculated for such traits in the the joint influence of small-effect alleles on life span is
pre-genomic era. An important conclusion emerged both significant and substantial and can be described as
from many such studies was that the complex traits are the “genetic dose — phenotypic response” relationship.
typically affected by a large number of common alleles, The existence of such relationship brings a new
each of little predictive value, with small or statistically perspective to GWAS of complex traits and can at least
non-significant effect [1-5]. Recent suggestion to focus partly justify sizable efforts and resources that have
on the search for rare alleles with significant phenotypic recently been invested in GWAS.
effects in small population subgroups [6] requires new
SNP data with minor allele frequencies (MAF) less than We evaluated associations between 550,000 SNPs and
1%. (Traditional GWAS deal will MAF >1%). More life spans in 1,173 genotyped participants of the
results could be obtained by sequencing selected areas Framingham Heart Study (FHS) original cohort. After
of the genome [7,8] performing a standard quality control procedure [9],
(call rate >80%; MAF>1%; HWE > 10‘7) for each SNPs
In this paper we show that the use of extended approach we evaluated parameters of the linear regression model
to GWAS allows for addressing the issues of lost by considering individuals’ life span as function of SNP
genetic influence on complex traits by analysing genotype (categorical variables) using code “0” for
regularities of joint action of many small-effect-low-sig- homozygote with respect to the major allele; “1” for
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heterozygote; and 2 for homozygote with respect to the
minor allele. The SAS program SAS PROC REG (©
SAS Institute, Inc.) has been used for this purpose. The
SNPs for which the estimate of the slope parameter was
positive and had p<10® were selected as “longevity”
SNPs. Note that this threshold is larger than 107 used in
traditional GWAS with correction for multiple
comparisons in data samples of similar size. This
procedure resulted in selection of 169 “longevity” SNPs.

To evaluate joint effect of genetic variants on life span,
we calculated the number of longevity SNPs (from
selected set of 169 SNPs) contained in the genome of
each individual in the study and performed regression
analyses considering lifespan as a linear function of
the number of longevity SNPs contained in person’s

genome. The estimates of both the intercept and the
slope were positive and highly statistically significant
(Figurel).

The estimated dependence explained 21% of variance in
life span. This estimate seems to be reasonable if one
takes into account that narrow sense heritability in life
span is estimated at the level about 25% [10]. The
estimated relationship between life span and the number
of longevity SNPs shown in Figure 1 is the main result
of this paper. It shows that in studies of genetic
determinants of longevity the joint influence of many
small-effect genetic variants may be substantial. We
suggest that similar “genetic dose” — “phenotypic
response” relationship is likely to characterize genetic
influence on many other complex traits.
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Figure 1. The “genetic dose — phenotypic response” relationship between the numbers of
selected 169 longevity alleles contained in individuals’ genome and mean life span obtained in the
analyses of 550K SNP data on participants of the original FHS cohort. Regression analyses were
performed using SAS PROC REG (© SAS Institute, Inc.) with correction for heteroscedasticity.
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The two aspects of performed analyses require
additional testing. The first is the use of data on all
genotyped individuals from the original FHS cohort,
which include first degree relatives from 618 families.
The second is the fact that the two procedures: (i)
selection of longevity SNPs and (ii) testing the presence
of their joint influence on life span used data on the
same individuals. To check whether the exclusion of
relatives from the list of study subjects modifies the
results of analyses, we randomly selected 618
individuals, one from each family, identified a set of
“longevity” SNPs using the procedure described above,
and estimated dependence of life span on the number of
selected longevity SNPs in these individuals. To diminish
the effect of sampling, we repeated this procedure 10
times. In each such analysis, the estimates of slope and
intercept were positive and highly statistically significant
with p<10™". These results suggest that the conclusion

about joint influence of longevity SNPs on life span does
not depend on the presence or absence of relatives among
the study subjects. To take into account variants selected
in each experiment, we unified sets of longevity SNPs
selected in each of 10 experiments. This procedure
resulted in the set with 70 genetic variants. Note that the
reduction in the number of study subjects (because of
excluding genetically dependent individuals) increases
the chances of selecting false positive variants. To
diminish the number of such variants, we intersected the
set of 70 SNPs with the set of 169 SNPs, selected carlier
using data on the entire FHS cohort. This procedure
resulted in 39 longevity SNPs.

This set of 39 SNPs was then used in regression
analyses where life span was considered as a linear
function of the number of longevity SNPs contained in
person’s genome. The result is shown in Figure 2.
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Figure 2. The “genetic dose — phenotypic response” relationship between the numbers of
selected 39 longevity alleles contained in individuals’ genome and mean life span obtained in the
analyses of 550K SNP data on participants of the original FHS cohort. Regression analyses were
performed using SAS PROC REG (© SAS Institute, Inc.) with correction for heteroscedasticity.
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Figure 3. The absence of dependence between the numbers of randomly selected 39 genetic
variants contained in individuals’ genome and life span. These genetic variants were randomly
selected from the same pool of SNPs excluding longevity alleles. Regression analyses were
performed using SAS PROC REG (© SAS Institute, Inc.) with correction for heteroscedasticity.

One can see from this figure that the estimates of both
the intercept and slope are statistically significant. The
Figure 3 shows no dependence of life span from the
number of SNPs taken randomly from the pool of SNPs
without 39 selected longevity SNPs.

The analyses showed that the estimates of both the
intercept and slope are highly statistically significant.
The estimated dependence of life span on genes
explains 19% of variance in life span, which is close to
21% estimated earlier. Thus, the presence of relatives in
the population used for selecting longevity SNPs does
not affect the conclusion about the presence of “genetic
dose” — “phenotypic response” relationship. The fact
that 39 selected SNPs explained almost the same
percent of life span variance as 169 SNPs selected
earlier (19% vs 21%) indicates that this set of SNPs
deserves further analyses. Table 1 shows how selected
SNPs are related to known genes.

The second aspect mentioned above deals with
prediction and replication. If the procedures, described
above, do select longevity variants, and if the detected
pattern of joint influence of such variants on life span is
a property of a biological mechanism, then genetic
variants selected using data on one population should be

able to predict life spans in other genetically
independent population of individuals who experienced
similar environmental and living conditions. To test
this, we randomly divided all 618 families into two
groups. Data on individuals from the first 309 families
plus data on 162 individuals with missing family
identities were used for selecting SNPs having effect on
life span. Then for each individual in the second
(genetically independent) group we identified the
number of such SNPs contained in person’s genome.
We estimated parameters of the linear regression model
considering life span as function of the number of
longevity variants contained in the genomes of
individuals from the same (first) group and from the
second (independent) group of individuals. To replicate
the result, longevity SNPs selected from data on the
second population were used for evaluating linear
“genetic dose” — “life span response” relationship on the
same population, as well as on the first population of
individuals genetically independent from the second
one. To reduce the sampling effect, the procedure of
random division of the 618 families into two groups
with subsequent selection of longevity variants and
estimating regression coefficients in the “genetic dose —
phenotypic response” relationship was repeated 10
times. The results are shown in Table 2.
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Table 1. Summary characteristics of the 39 SNPs revealed in the study and gene/protein functions for closest genes
(known or suggested)

SNP rs# Chr Position Ancestra Type Distance Closest gene Gene full name Gene/protein
# 1 allele to gene function
rs2031577 10 4050003 G INTERGEN | -17129 RP11-433J20.2 | H. sapiens chr 10
IC clone RP11-
433J20
rs6489785 12 121363724 | C INTERGEN | -52622 HNF1A HNF1 homeobox liver transcription
IC (TCF1) A factor
rs3847687 12 131525053 | T INTRONIC | 0 GPR133 G protein-coupled | transmembranic signal
receptor 133 transduser; activates G
proteins within cell
rs4891159 18 74101941 | G INTRONIC | 0 ZNF516 zinc finger protein | the part of
516 transcription factors
rs10445407 17 79261809 | A INTRONIC | 0 SLC38A10 solute carrier amino acid transporter
family 38, member
10
rs4745062 9 73784264 | C INTRONIC | O TRPM3 transient receptor mediates calcium entry
potential channel potentiated by calcium
store depletion
rs2024714 20 60212494 | C INTRONIC | 0 CDH4 R-cadherin calcium-dependent
(retinal) cell-cell adhesion
rs7315621 12 132085196 | G INTERGEN | -60412 AC117500.2
IC
rs16975963 19 38325536 | G NON 0 AC016582.2
CODING
GENE
rs4732038 7 134250322 | C INTRONIC | 0 AKRI1B15 aldo-keto superfamily of
reductase family 1, | reductases that reduce
member B15 aldehydes and ketones
to alcohols
rs2516739 16 2097158 N/A INTRONIC | 0 NTHL1 nth endonuclease base excision repair;
I-like 1 DNA N-glycosylase of
the endonuclease I1I
family
rs7874142 9 137704782 | A INTRONIC | 0 COL5A1 collagen, type V, regulates the assembly
alpha 1 of heterotypic fibers in
tissues
rs4468878 20 59928237 | C INTRONIC | 0 AL365229.1 near CDH4 possibly cell-cell
adhesion
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rs13008689 8530256 INTERGENIC | -153466 | AC011747.3
rs2273 4 76889388 INTRONIC 0 SDADI1 SDA1 domain preferentially
containing expressed in fetal
protein tissues
rs2882281 13 90622455 INTERGENIC | -21630 RP11-388D4.1 | locus tag for a
pseudogene
rs2282032 14 90758891 INTRONIC 0 Cl4orf102 chromosome 14
open reading
frame 102
rs9876781 3 48487338 NON 0 RP11-24C3.2
CODING
GENE
1s6568433 6 106829537 INTERGENIC | -39044 AL109920.3
rs9517320 13 99126303 INTRONIC 0 STK24 serine/threonine participates in the
kinase 24 mitogen-activated
protein kinase
(MAPK) cascade
rs4148546 13 95680285 INTRONIC 0 ABCC4 ATP-binding ATP-binding cassette
cassette, sub- (ABC) transporter
family C
(CFTR/MRP)
rs9592783 13 71883214 INTERGENIC | -128884 | DACHI1 dachshund a chromatin-associated
homolog 1 protein that regulates
(Drosophila) gene expression and
cell fate; highly
conserved
1s739401 11 3036324 INTRONIC 0 CARS cysteinyl-tRNA catalyzes the
synthetase aminoacylation of a
tRNA;
rs10256972 7 1039003 INTRONIC 0 C7orf50 chromosome 7
open reading
frame 50
rs3212335 15 27012141 INTRONIC 0 GABRB3 GABA A ionic channel family
receptor, beta that serves as the
receptor for GABA,;
may be associated
with memory
rs6915183 6 166706169 INTERGENIC | -12999 PRR18 proline rich 18
rs4721135 7 1912222 INTRONIC 0 MADIL1 MADI1 mitotic component of the
arrest deficient- mitotic spindle-
like 1 assembly checkpoint
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rs3106598 13 61678912 | G INTERGENIC | -304909 | PCDH20 protocadherin 20 | transmembrane
receptor, a role in
specific cell-cell
connections in the
brain
rs1356888 2 50516018 | C INTRONIC 0 NRXN1 cell adhesion in
nervous system
rs9616906 22 51104680 | G UPSTREAM -3552 AC000050.2
rs13053175 22 37613309 | T UPSTREAM -7992 RAC2 ras-related C3 GTPase of the RAS
botulinum toxin superfamily
substrate 2 regulating cell
growth, cytoskelet,
and the protein
kinases activation
1s5766691 22 47532396 | G INTRONIC 0 TBCID22A TBC1 domain
family
rs13118159 4 1365127 N/A INTRONIC 0 RP11-
1244E8.1
rs7168365 15 53805825 | C DOWNSTREA | -113 WDR?72 WD repeat
M domain 72
rs7493138 14 29021928 | C INTERGENIC | -213122 | FOXGI1 forkhead box G1 | transcription factors
rs432203 2 70764688 | A INTRONIC 0 TGFA transforming competes with EGF
growth factor, for binding to the
alpha EGF receptor
rs6813479 4 137660383 | A INTERGENIC | -57494 RP11-138117.1
rs1327533 9 113131163 | T INTRONIC 0 SVEP1 EGF and
pentraxin domain
containing 1
rs2826891 21 22910116 | T INTRONIC 0 NCAM2 neural cell brain protein,
adhesion superfamily of the
molecule 2 immunoglobulin

*Enrichment with genes related to cell-cell adhesion can be noticed. Since cell-cell adhesion proteins play crucial role in cell
sensitivity to contact inhibition and because insensitivity to contact inhibition is critical for cancer development, especially for
manifestation of invasion and metastasis, we speculate that this enrichment might potentially be linked to a higher resistance

to cancer among long-living individuals.

One can see from this table that the effect of the number
of selected “longevity” SNPs on life span is significant
in both groups. These analyses show that developed
approach has predictive power, and that joint influence
of longevity SNPs on life span can be replicated in
populations of genetically independent individuals.

Some recent studies provide arguments that the
Bonferroni corrections for multiple comparisons,
traditionally used in GWAS, are too rigid and should be
relaxed [11]. The results of this study support this view:

many genetic variants involved in the “genetic dose —
phenotypic response” relationship would not be selected
by traditional GWAS methods. We found that relaxing
the procedure for selecting longevity alleles (the use of
selection threshold p<10™® instead of p<10”) increases
the number of selected longevity SNPs having small
effects and improve the fit of the life span data by the
“number of longevity SNPs — life span” curve. This
suggests that taking effect size of alleles into account
may help reveal additional features of genetic influence
on complex traits.
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Table 2.

# N1 Nz NlSNP NZSNP Q Q a, 2%

1 661 512 52 8 0.30 0.26 0.14 0.16
2 689 484 40 9 0.42 0.35 0.21 0.23
3 627 546 18 43 0.87 0.80 0.28 0.22
4 677 496 20 25 0.67 0.63 0.56 0.49
5 680 493 34 16 0.47 0.41 0.33 0.31
6 630 543 32 22 0.48 0.39 0.46 0.48
7 631 542 43 15 0.40 0.31 0.22 0.27
8 658 515 14 39 0.86 0.99 0.33 0.25
9 647 526 31 18 0.48 0.38 0.38 0.42
10 672 501 37 10 0.44 0.37 0.24 0.27

The results of 10 experiments in which genetic variants individually affecting life span (longevity SNPs) were selected
twice using data on two populations representing genetically independent genotyped individuals in the original
Framingham Heart Study (FHS) cohort for whom life span data are available. The longevity SNPs selected from data on the
first population were used for evaluating linear “genetic dose” — “life span response” relationship on the same population,
as well as on the second population of individuals. In turn, longevity SNPs selected from data on the second population
were used for evaluating linear “genetic dose” — “life span response” relationship on the same population, as well as on
the first population of individuals. Column “#” shows experiment’s number. Columns N1 and N2 show the number of
1snp 279 Nosnp
number of longevity SNPs selected using data on the first (original) and on the second (rest) populations respectively.

individuals in the first and in the second (genetically independent) populations. Columns N show the

Column ¢, shows the estimate of the slope of the regression line describing dependence of life span on the number of

longevity SNPs contained in the genomes of individuals from the first population. Column al* shows the estimate of the
slope of the regression line describing dependence between life span and the number of selected longevity SNPs

contained in genomes of individuals from the second (independent) population. The estimates «, and al* use SNPs

selected in the analyses of connection between SNPs and life span in the first (original) population. Column ¢, shows the
estimate of the slope of the regression line describing dependence of life span on the number of longevity SNPs contained
in the genomes of individuals from the second population. Column a; shows the estimate of the slope of the regression
line describing dependence between life span and the number of selected longevity SNPs contained in genomes of
individuals from the first population. The estimates &, and a; use SNPs selected in the analyses of connection between

genes and life span in the second (rest) population. All four estimates are highly significant (p<1x10™).

The possibility of wusing a straight line for genome-wide data nowadays allows for evaluating such

approximating “the number of longevity SNPs -- life
span” relationship indicates the presence of substantial
additive component of the genetic contribution to
longevity. It is relevant to note that additive genetic
effects were the subject of numerous studies in
quantitative genetics of the pre-genomic era. Many
genetic calculations (e.g., estimates of narrow sense
heritability of complex traits) were based on the
assumption about the additive nature of genetic
component of phenotypic variation. The availability of

effects directly. Moreover, evaluating the non-additive
(non-linear) joint genetic influence (epistasis) becomes
also possible with the use of more sophisticated patterns
of the “dose — response” relationship.

While the replication of findings became a standard
requirement in GWAS, the results of our analyses
suggest that in studying joint effect of many alleles this
practice needs to be revised. Our analyses show that one
should not expect that exactly the same sets of genetic
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variants will contribute to “genetic dose — phenotypic
response” relationship evaluated using data on other
population. One reason for this may be gene-
environment interaction: difference in populations’
exposure to external conditions is likely to produce
difference in genetic regulation of the trait in these
populations.  Identification of genetic variants
“sensitive” to specific external signals will open new
opportunities for studying the role of genetic and non-
genetic factors in complex traits.
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