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Novel roles for JNK1 in metabolism
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Abstract: Activation of stress-kinase signaling has recently been recognized as an important pathophysiological mechanism
in the development of diet-induced obesity, type 2 diabetes mellitus and other aging-related pathologies. Here, c-Jun N-
terminal Kinase (JNK) 1 knockout mice have been shown to exhibit protection from diet-induced obesity, glucose
intolerance, and insulin resistance. Nonetheless, the tissue-specific role of JNK1-activation in the development of the
metabolic syndrome has been poorly defined so far. Recently, it was demonstrated that JNK1 signaling plays a crucial role
in the central nervous system (CNS) and in the pituitary to control systemic glucose and lipid metabolism partially through
regulation of hormones involved in growth and energy expenditure.

Insulin signalling and its negative regulators in 7]. PI3K activity mediates activation of the kinase AKT,
aging-associated diseases which phosphorylates and thereby deactivates forkhead
transcription  factors  (FOXOs). FOXOs  are
The insulin/insulin-like signalling pathway is highly transcriptional regulators of genes involved in
conserved throughout the animal kingdom. Whereas its metabolism and growth [8]. Activation of the
predominant role in mammals is the control of PI3K/AKT/FOXO axis mediates many of insulin’s and
metabolic homeostasis and its deregulation leads to the insulin-like peptides’ effects, including e.g. regulation
development  of  diabetes  mellitus, lowering of growth, glucose/fat metabolism, stress response and
insulin/insulin-like ~ signalling in c¢. elegans, d. lifespan (Figure 1) [9]. Besides the expression and
melanogaster and m. musculus has been implicated in activation of this pathway in peripheral organs, the
lifespan extension [1-5]. insulin/insulin-like  signalling machinery is also
expressed and active in the central nervous system
The anabolic peptide hormone insulin is secreted from (CNS) where it regulates fertility and body weight [10-
the pancreas in response to an increase of blood glucose 12]. Furthermore, it was recently demonstrated that
concentrations. It acts on the liver to reduce hepatic insulin action in the CNS also controls peripheral
glucose output and it promotes glucose and lipid uptake glucose and fat metabolism [13-15].
into peripheral tissues such as adipose tissue and
skeletal muscle. Binding of insulin or insulin-like In the last decade, several studies have demonstrated
peptides to their receptor leads to recruitment of insulin that central as well as peripheral insulin signalling can
receptor substrate (IRS) proteins, subsequently be drastically impaired by a variety of obesity- and/or
activating two major signalling branches: the aging-associated parameters such as hyperlipidemia,
phosphatidylinositol 3 kinase (PI3K)-pathway and the hyperglycemia, endoplasmatic reticulum (ER) stress
mitogen-activated protein kinase (MAPK)-pathway [6, and inflammation [16-19]. Following this, the incidence
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of numerous aging-associated diseases such as diabetes
mellitus and obesity has created an urgent necessity to
define the mechanisms underlying energy intake and
expenditure, and to identify molecular targets for
pharmacological intervention.

JNKI1 and aging-associated diseases

In 2002, the group of Gokhan Hotamisligil revealed that
mice deficient for the stress mediator c-Jun N-terminal
Kinase (JNK) 1 are protected from the development of
high fat diet-induced obesity and glucose intolerance, as
well as insulin resistance [20]. Nonetheless, it remained
unclear, in which tissue(s) JNK1 might act to impair
energy and glucose homeostasis under conditions of
diet-induced obesity.

The family of JNK kinases can not only be activated by
cytokines, but also by endoplasmatic reticulum (ER)
stress and hyperlipidemia, all of which are elevated in
obesity and/or diabetes mellitus [21]. Previous data

indicated that upon activation, JNKI1 mediates
inhibitory serine phosphorylation of IRS proteins,
thereby impairing insulin action [22]. Interestingly, it
was recently reported that mutation of the most
frequently investigated JNK1 phosphorylation site,
Ser307, augments (and not blocks) insulin resistance in
obese mice, possibly pointing to either adaptive
mechanisms during development or additional parallel
pathways by which JNK1 can affect metabolism [23].

JNKI1 and CNS insulin sensitivity

In the last year, JNK1 has been conditionally
inactivated in several peripheral classically insulin-
sensitive tissues including adipose tissue, muscle and
liver [24-26] (Figure 1). Nevertheless, none of these
mouse models fully recapitulated the protection from
obesity and diabetes observed in conventional knockout
mice opening the possibility that JNK1 activation also
in the CNS may contribute to its effects on energy and
glucose metabolism.
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JNK activation in the hypothalamus during obesity
development has been linked to endoplasmatic
reticulum stress, inflammation, or hyperlipidemia [17,
27-29]. Notably, during our studies of lipid-induced
hypothalamic leptin resistance, we observed that intra-
cerebroventricular (icv.) injection of saturated fatty
acids such as palmitate, induced activation of
hypothalamic IKK, whereas activation of JNKs was not
readily detectable in vivo [30]. To firmly address the
question if INK1 activation in the CNS will give rise to
dysfunctional energy homeostasis, mice lacking JNK1
in all neurons (called JNK1°™*) were generated by
crossing mice with a loxP-flanked JNKI1 allele with
those harbouring a Nestin-Cre gene, which is generally
used to ablate a gene of interest in neurons and
astrocytes in the CNS [10, 31]. In line with previous
studies, JNK1 ablation in the CNS did not affect leptin
sensitivity, independent of route of administration
(intraperitoneal or icv.). Thus, it was asked if JNKI, in
line with its putative role in regulating peripheral insulin
sensitivity, would also affect insulin signalling in the

Figure 2. JNK1 represents a crucial regulator for a
wide spectrum of physiological processes. In the
white adipose tissue, JNK1 has been demonstrated to
regulate expression of interleukin 6, which upon
release into the circulation may act on the liver to
decrease hepatic insulin sensitivity. Hepatic JNK1
action may downregulate insulin degradation, thus
improving insulin half-life, and protecting from
steatosis. JNK1 action in the skeletal muscle does
impair local insulin sensitivity, although systemic
glucose homeostasis is mostly unaffected. In the
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CNS, which is crucial for energy homeostasis [10, 13,
14]. INK1*™® mice were highly sensitive to the
anorectic effect of centrally applied insulin, even when
given at doses that had no effect on control mice [31].
In line with the notion that insulin affects body weight
and glucose homeostasis mainly by its action in the
hypothalamus [32], we demonstrated that high fat diet-
fed INK1*™* mice remained insulin sensitive in the
hypothalamus [31]. This has also been independently
demonstrated recently in conventional JNK1 knockout
mice [33]. These data indicate that JNK1 ablation in the
CNS retains hypothalamic insulin signalling under
conditions of positive energy balance. Nonetheless, it is
not clear if this effect is solely derived from lack of JINK1
in hypothalamic neurons, or indirectly mediated by other,
JNK1-deficient extra-hypothalamic neuron populations
with synaptic connections onto hypothalamic neurons.
Thus, generation of mice with JNKI1 deficiency in
specific hypothalamic neuron populations will help to
understand the cell-type specific role(s) of JNKI1 in the
hypothalamus.
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JNKI1, growth and energy expenditure

During metabolic phenotyping, we noticed increased
energy expenditure in JNKI1*™® mice, even when
corrected for lean body mass [31]. Accordingly, we
found increased circulating levels of the thyroid
hormone thriiodothyronine (T3), in the presence of
elevated concentrations of its releasing hormone,
namely thyroid stimulating hormone (TSH), a finding
which was independently reported by Roger Davis and
colleagues [31, 34]. However, hypothalamic expression
of thyroid releasing hormone (TRH), which itself
represents the upstream regulator for expression and
release of TSH in the pituitary, was unchanged [31].

While Nestin-Cre mice have been widely used for pan-
neuronal (and astrocyte-specific) ablation of genes,
Nestin is also expressed in a stem cell population in the
pituitary [35]. Thus, the deleted JNKI1 allele was also
detected in pituitaries of INK1°™* mice, indicating that
the change in TSH expression and subsequent T3 may
be due to a pituitary-autonomous effect (31]. Along this
line, the expression of the receptor for TRH, TRHR,
was increased by JNK inhibition in pituitary cells in
vitro, akin to the increased expression of TRHR in
pituitaries of INK1*N* mice in vivo [31].

Although energy expenditure was increased in JINK 14N
mice, body fat mass was not changed compared to
controls, indicating that JNKI*™® mice were not
protected from obesity itself, at least during the first
four months of age [31]. On the other hand, JNK1*N®
mice demonstrated reduced body weight either on
normal chow diet (ND) or on HFD. Thus, it was asked
whether reduced somatic growth may account for the
reduced body weight. Indeed, activity of the growth
hormone (GH) — insulin-like growth factor (IGF) 1 axis,
which controls somatic growth, was reduced [31, 36].

Does JNK1 inhibition mimic caloric restriction?

When exposed to HFD, JNKI*™* mice not only
demonstrated protection against systemic glucose
intolerance and insulin resistance, but also showed
reduced hepatic steatosis, and importantly, an anti-
inflammatory gene expression pattern in the adipose
tissue [31].

So far, a major intervention known to prolong life (and
protect against the plethora of aging-associated
diseases) is caloric restriction (CR). Strikingly, CR
itself reduces circulating levels of GH in rodents, and
inhibition of this decrease may negate the beneficial
effects of CR, while mice with mutations in this
pathway show longer life span as well as protection
against systemic insulin resistance [37-40]. Notably, it

is only poorly understood, how CR regulates the GH-
IGF1 axis on a molecular level. Upon HFD, JNK
activity is increased both in the hypothalamus, but
strikingly also in the pituitary of mice, indicating that
JNK1 might directly regulate the GH-IGF1 axis in these
tissues. In addition, it has been shown that overfeeding
increases somatic growth, and HFD increases naso-anal
length, in accordance with increased expression of
growth hormone releasing hormone receptor (GHRHR)
in the pituitary [31]. Thus, we speculate that JNKI
might act as a sensor for nutrients, and thus regulate
both energy expenditure and growth in accordance with
energy levels.

JNK activation upon obesity may also be interpreted as
a stress-resolving response and have beneficial effects
under specific circumstances. Thus, JNK-mediated
regulation of forkhead transcription factors offers
protection from cellular stress, at least in invertebrates
[41, 42]. Furthermore, signal duration, strength and
spatio-temporal distribution may play a role for the net
outcome of JNK activation. Eventually, it seems
possible that INK1 regulates either growth or thyroid
axis, indirectly affecting one another. Further analysis
of cell type-specific INK1 knockout mice will help to
define the roles of this stress kinase in the
pathophysiology of obesity, diabetes mellitus and other
aging-related diseases.
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