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Cellular senescence controls fibrosis in wound healing
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Abstract: Mammalian wound healing involves the rapid synthesis and deposition of extracellular matrix (ECM) to maintain
tissue integrity during repair. This process must be tightly controlled, as its deregulation may result in fibrosis, scarring, and
loss of tissue function. Recent studies have uncovered an efficient and parsimonious mechanism for rendering fibrogenesis
self-limiting in wound healing: in such diverse organs as the liver and skin, the myofibroblasts that initially proliferate and
produce ECM are themselves eventually driven into senescence, blocking their further proliferation and converting them
into matrix-degrading cells. Myofibroblast senescence in skin wounds is triggered by a dynamically expressed matricellular
protein, CCN1/CYR61, which acts through integrin-mediated induction of oxidative stress. We propose that the onset of
myofibroblast senescence is a programmed wound healing response that functions as a self-limiting mechanism for
fibrogenesis, and this process may be regulated by the ECM microenvironment through the expression of CCN1/CYR61.

In a hostile environment rife with microbial invaders, The principal cell type that contributes to the synthesis
mammals respond to wounding and tissue injury with a and deposition of ECM in healing wounds is the
vigorous inflammatory response coupled to the rapid myofibroblast, which expresses a-smooth muscle actin
synthesis and deposition of extracellular matrix (ECM), and promotes wound contraction [43]. Myofibroblasts
thereby maintaining tissue integrity and providing can be derived from a variety of sources, including
defense against microbes while the wounded tissue is differentiation of activated resident fibroblasts and
being repaired and remodeled. In virtually all recruited fibrocytes, and epithelial- and endothelial-

mammalian organ systems, wound healing occurs
similarly in three overlapping but distinct phases:
inflammation, ECM deposition and tissue formation,
and tissue remodeling [18,35,37]. Each of these steps
must be tightly regulated for optimal wound healing.
However, excessive ECM deposition may occur in
wound repair, particularly in association with chronic
injury and inflammation [15,38,43]. When excessive,
non-functional ECM replaces parenchyma, the resulting
fibrosis, scarring, and loss of tissue function may lead to
deleterious consequences. For example, fibrotic scarring
in the liver due to viral infections, in the lung from
obstructive pulmonary disease, and in the heart
following myocardial infractions can lead to organ
failure and death. These types of dysfunctional wound

mesenchymal transitions of epithelial and endothelial
cells, respectively [14,43]. Whereas activated myo-
fibroblasts proliferate and initially promote wound
repair by producing ECM components, fibrosis may
result when wound healing becomes chronic or if the
ECM producing activity of myofibroblasts continues
unchecked. However, the mechanism that keeps ECM
production in balance with wound healing is poorly
understood. Here we discuss the evidence indicating
that myofibroblasts are driven into senescence at later
stages of wound healing, thereby converting these
ECM-producing cells into ECM-degrading cells, thus
imposing a self-limiting control on fibrogenesis. In skin
wound healing, myofibroblast senescence is triggered

healing adversely affect a large number of people by the dynamically expressed matricellular protein

worldwide, and inflict a significant burden on public CCN1 (also known as CYR61) through integrin
health [18]. signaling.
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Cellular senescence limits fibrosis during wound
repair

First recognized in human fibroblasts experiencing
replicative exhaustion in culture [19,20], cellular
senescence is an essentially irreversible form of cell-
cycle arrest that can be triggered by a variety of cellular
damage or stress, including DNA damage, chromatin
disruption, oncogene activation, oxidative stress, and
telomere dysfunction [4,10]. Senescent cells remain
viable and metabolically active, but are refractory to
mitogenic stimulation. Another important feature of
senescent cells is the expression of the senescence-

associated secretory phenotype (SASP) or the
senescence messaging secretome (SMS)[4,28,45],
characterized by the increased expression of

inflammatory cytokines/chemokines (e.g., IL1, IL6,
IL8, MCP2, MCP4, MIP-la, MIP-3a) and ECM
degrading enzymes (e.g., matrix metalloproteinases
[MMPs]), and downregulated expression of ECM
components (e.g., collagen) [12,36]. Compelling
evidence has established cellular senescence as an
important mechanism of tumor suppression, which
functions by blocking the proliferation of damaged cells
that may be at risk of oncogenic transformation
[3,9,13,29].  Paradoxically, the expression of
SASP/SMS by senescent cells can also facilitate cancer
progression by modifying the tissue microenvironment
[11]. Therefore, senescent cells may have diverse and
context-dependent effects on tissue pathologies.
Although senescent cells have been found in various
noncancerous pathologies and aging-related diseases,
their roles in these contexts have not been thoroughly
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investigated [16,31].

Two recent studies have shown that senescent
myofibroblasts accumulate as part of the normal process
of tissue repair, and function to limit the extent of
fibrogenesis associated with wound healing [22,26].
Upon damage in the liver, activated hepatic stellate cells
are the primary source of myofibroblasts, which
proliferate and produce matrix proteins to support
hepatocyte proliferation and organ repair [2,32]. In
chronic liver injuries, these cells are also responsible for
excessive ECM production, leading to fibrosis and
eventually cirrhosis. Krizhanovsky ef al. showed that in
mice subjected to repeated injections of carbon
tetrachloride (CCly), a protocol that induces liver
damage and fibrosis, some of the ECM producing
myofibroblasts eventually become senescent and
express the SASP/SMS [26]. These senescent cells
function to limit fibrosis in several ways: 1. they cease
to proliferate, reducing the number of ECM producing
cells; 2. they curtail the synthesis and promote the
degradation of matrix components through the
expression of SASP/SMS; and 3. they are eventually
cleared by natural killer cells, thereby removing the
myofibroblasts and accelerating the resolution of
fibrogenesis and wound healing [26,44]. The expression
of inflammatory cytokines as part of the SASP/SMS
may also promote immune surveillance at the wound
site [25,26]. Consistent with these interpretations, mice
that are genetically defective for p53 and/or pl6™ %,
which are critical for mediating senescence, suffer
exacerbated fibrosis and delayed resolution of fibrosis
in response to CClg-induced injury.
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Figure 1. Myofibroblast senescence imposes self-limiting control on fibrogenesis during wound healing. Upon
injury, myofibroblasts derived from activated fibroblasts and from other cell types proliferate and rapidly synthesize ECM to
provide tissue integrity during repair. At later stages of wound healing, these ECM-producing myofibroblasts are themselves
driven into senescence, whereupon they express an ECM-degrading phenotype characteristic of senescent cells. Therefore,
fibrogenesis is self-limiting as myofibroblasts undergo senescence, thereby halting the proliferation of the ECM-producing cells
and promoting ECM degradation. In cutaneous wound healing, senescence is triggered by the matricellular protein CCN1.
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A similar mechanism of fibrosis control appears to
operate in excisional cutaneous wound healing, which
involves a tissue and mode of injury distinct from CCly-
induced liver damage [22]. During skin wound healing,
recruited fibroblasts and differentiated myofibroblasts
proliferate and deposit ECM to form the granulation
tissue. Myofibroblasts are driven into senescence at
later stages of wound healing, whereupon they cease to
proliferate and upregulate the expression of matrix
degrading enzymes (MMP2, MMP3, and MMP9)
concomitant with downregulation of collagen and TGF-
B, thereby exerting an anti-fibrotic effect [22]. Hence,
the control of fibrogenesis during wound healing is
efficient and parsimonious — the very cells that
synthesize ECM in wound healing, the myofibroblasts,
are themselves converted into matrix-degrading
senescent cells to produce a self-limiting effect (Figure
1). These senescent cells may also promote tissue
remodeling and clearance of the myofibroblasts during
wound maturation. It is interesting to note that
senescent cells are not required for wound healing per
se, since healing occurs in mutant mice deficient in
senescent cell accumulation [22,26].

CCN1 controls cellular senescence in cutaneous
wound healing

Whereas the factors that trigger senescence of activated
stellate cells in CCly-induced liver injury are currently
unknown, senescence in cutaneous wounds is controlled
by CCNI1 (also known as CYRG61), a matricellular
protein dynamically expressed at sites of inflammation
and wound healing [7]. Purified CCNI1 protein can
directly induce fibroblast senescence, both as a soluble
factor and as an immobilized cell adhesion substrate
[22]. Mechanistically, CCNI1 induces fibroblast
senescence through its direct binding to integrin of3;
and cell surface heparan sulfate proteoglycans (HSPGs),
thereby activating RAC1 and the RACI1-dependent
NADPH oxidase 1 to trigger a robust and sustained
accumulation of reactive oxygen species (ROS).
Consequently, CCN1 induces DNA damage response
and p53 activation, and triggers the ROS-dependent
activation of p38 MAPK and ERK, which in turn
activate the p16™~*/pRb pathway to induce senescence
(Figure 2). Both p53 and p16INK4a/pr pathways
contribute to CCNl-induced senescence [4,10]. Cell
adhesion to CCN1 induces a much higher and more
sustained level of ROS than cell adhesion to other ECM
proteins such as collagen, fibronectin, and laminin,
which do not induce senescence. The accumulation of a
substantial level of ROS sustained for at least 10 hours
appears necessary for efficient induction of senescence
in fibroblasts [22]. A CCN1 mutant protein (DM)
disrupted in its aeB;-HSPGs binding sites is unable to

induce senescence or the SASP. Consistently, knockin
mice in which the dm allele replaces the genomic Ccnl
locus (Cenl“™™) lack senescent cells in the granulation
tissue and suffer exacerbated fibrosis during cutaneous
wound healing [22]. Topical application of purified
CCNI1 protein to cutaneous wounds reverses these
defects, further establishing the critical role of CCN1 in
controlling myofibroblast senescence to limit fibrosis.
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Figure 2. A mechanistic model for CCN1-induced
senescence. The binding of CCN1 to its receptors in fibro-
blasts, integrin oP; and HSPGs, activates RAC1 and the RAC1-
dependent NADPH oxidase 1 to generate a robust and sustained
accumulation of ROS. This leads to a DNA damage response and
activation of p53, as well as the ROS-dependent hyperactivation
of ERK and p38 MAPK, leading to plG'Nma induction [22]. Both
p53 and p16”\“<4a act upon pRb to induce senescence.

Future questions and prospects

As the role of cellular senescence in wound healing and
tissue repair is only beginning to be appreciated, many
questions still remain. First, how broadly is cellular
senescence invoked as a mechanism of fibrosis control?
The observation that cellular senescence operates in
both excisional skin wounds and toxin-induced liver
injury, two different modes of wounding in disparate
organ systems, suggests that senescence may be part of
a general, programmed mechanism of fibrosis control in
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wound repair in diverse organs and tissues. Whether
CCN1 functions to control senescence in contexts other
than cutaneous wound healing is not yet known,
although its high expression at many sites of
inflammation and tissue injury suggests a role in
disparate models of wound healing [7].

In addition to CCNI1, other factors expressed in the
wound  microenvironment may also  promote
senescence. For example, overexpression of the
plasminogen activator inhibitor-1 (PAI-1) is sufficient
to drive fibroblasts into senescence in vitro [24]. PAI-1
knockout mice showed accelerated wound closure with
diffused and unorganized collagen deposition, although
whether PAI-1 controls senescence in healing wounds is
currently unknown [6]. Interestingly, CCNI1 can
upregulate PAI-1, possibly through the activation of p53
[8]. Additionally, several secreted proteins such as
insulin-like growth factor binding proteins (IGFBPs),
cytokines such as IL6, and ligands of the chemokine
receptor CXCR2 have been shown to mediate or
reinforce senescence [1,23,27,34,41,42]. Some of these
secreted factors are also involved in wound healing
[17,21], although their potential role in myofibroblast
senescence or fibrosis control remains to be explored.

Further investigation will be required to assess the role
of cellular senescence in wound healing-related
pathologies in humans. Senescent cells have been
isolated from chronic and non-healing wounds such as
pressure sores, diabetic ulcers, and venous ulcers, and
may contribute to wound chronicity [39,40]. It is
possible to postulate that excessive accumulation of
senescent cells might have arisen from the enhanced
expression of factors controlling senescence, such as
CCNI1 or PAI-1, as a measure to control fibrosis in
chronic injury. Assessment of whether these senescence
inducing factors are deregulated in chronic wounds may
shed light on this issue. Senescent cells have also been
found in various human pathologies associated with
inflammation or injury repair, including atherosclerotic
plaques [30], osteroarthritis [33], and benign prostatic
hyperplasia [5]. Determining whether cellular
senescence is invoked as a mechanism for fibrotic
control in these contexts will be of interest. Further
studies that identify the critical regulators of senescence
in these pathologies, for which CCNI1 is a candidate,
may underscore potential signaling pathways for
therapeutic intervention.
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