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Abstract: Histone deacetylase inhibitors represent a new class of anticancer therapeutics and the expectation is that they
will be most effective when used in combination with conventional cancer therapies, such as the anthracycline,
doxorubicin. The dose-limiting side effect of doxorubicin is severe cardiotoxicity and evaluation of the effects of
combinations of the anthracycline with histone deacetylase inhibitors in relevant models is important. We used a well-
established in vitro model of doxorubicin-induced hypertrophy to examine the effects of the prototypical histone
deacetylase inhibitor, Trichostatin A. Our findings indicate that doxorubicin modulates the expression of the hypertrophy-
associated genes, ventricular myosin light chain-2, the alpha isoform of myosin heavy chain and atrial natriuretic peptide,
an effect which is augmented by Trichostatin A. Furthermore, we show that Trichostatin A amplifies doxorubicin-induced
DNA double strand breaks, as assessed by yYH2AX formation. More generally, our findings highlight the importance of
investigating potential side effects that may be associated with emerging combination therapies for cancer.

INTRODUCTION branes [2-4]. In addition, anthracyclines have been

shown to modulate various signalling pathways
Conventional cancer therapies involve the use of including those involved with apoptosis [5, 6]. The
combinations of surgery, radiotherapy and various most potent and widely used anthracycline is
chemotherapeutic  regimens. The  anthracyclines doxorubicin, an analogue that has potent broad-
represent an extremely effective class of chemo- spectrum antineoplastic activity and has been used a
therapeutics which are used for the treatment of frontline cancer chemotherapeutic for several decades
numerous haematological and solid malignancies [1]. [7]. However, the clinical application of doxorubicin is
They have been shown to induce cancer cell-death by a limited by cumulative, dose-dependent cardiotoxicity
number of mechanisms including DNA binding and [8]. For example, clinical trials have indicated that 7%
intercalation, generation of free radicals, inhibition of of patients treated with doxorubicin experience a
the topoisomerase IT enzyme and damage to cell mem- cardiac event with a cumulative dose of 150 mg/m” and
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the proportion reaches 65% with a cumulative dose of
550 mg/m’ [9]. The various cardiomyopathies,
including cardiac hypertrophy, that are associated with
doxorubicin treatment are well known and have been
described extensively [10-13].

Histone deacetylase (HDAC) inhibitors represent a new
class of anticancer therapeutics. The first clinical
compound is the hydroxamic acid, suberoylanilide
hydroxamic acid (SAHA; Vorinostat) which has been
approved by the US FDA for the treatment of cutaneous
T-cell lymphoma (CTCL) [14, 15]. Further, several
HDAC inhibitors are currently undergoing evaluation in
clinical trials and encouraging antineoplastic effects at
well-tolerated doses have been observed in both
haematological and solid cancers [14, 15]. The effects
of HDAC inhibitors are due to numerous mechanisms
including, induction of differentiation, cell cycle arrest,
production of reactive oxygen species, altered cell
migration, mitotic and autophagic cell death, and
induction apoptosis in cancer cell-lines in culture and in
vivo [16-19].  Studies have shown that the cytotoxic
and more recently the DNA damaging effects of HDAC
inhibitors is much more pronounced in malignant or
transformed cells compared to normal cell lines [20].

Relative MLC-2v
mRNA expression

For cancer therapy, it is expected that HDAC inhibitors
will be particularly useful when used in combination with
conventional therapeutics [16, 21-23]. Indeed,
combinations of various HDAC inhibitors with
radiotherapy or chemotherapeutics, including doxo-
rubicin, have been widely investigated and synergistic or
at least additive effects have been observed [24-31].
Given this emerging therapeutic strategy, it is important
to evaluate the effects of combinations of HDAC
inhibitors with conventional cytotoxic agents in relevant
models to identify and investigate potential clinical side
effects. Since cardiomyopathy is the most severe side
effect of doxorubicin treatment, we evaluated the effects
of combinations of the anthracycline with Trichostatin A,
the prototypical broad-spectrum HDAC inhibitor, in
cardiomyocytes [32]. An established cell culture
approach of doxorubicin-induced cardiac hypertrophy in
rat H9c2 ventricular myocardial cells was used as a
model system [33]. Firstly, we evaluated the effects of
doxorubicin on the expression of the hypertrophy-
associated genes, ventricular myosin light chain-2 (MLC-
2v), the alpha isoform of myosin heavy chain (o.-MHC)
and atrial natriuretic peptide (ANP) [34-38]. The effects
of Trichostatin A on doxorubicin-induced hypertrophic
responses in H9¢2 cells were then examined.
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Figure 1. Retinoic acid induces differentiation of embryonic H9c2 myoblasts to cardiomyocytes in low serum supplemented
with retinoic acid. Rat embryonic heart-derived myoblasts maintained in DMEM containing 10% FBS (A) were cultured in
DMEM containing 1% FBS for seven days resulting in differentiation to skeletal muscle (B). A seven day culture in low
serum media supplemented with 10 nM retinoic acid resulted in differentiation into cardiac myocytes (C). RT-PCR
quantitation of MLC-2v transcripts (which display absolute cardiac tissue specificity) indicates overexpression of the gene in
retinoic acid treated cells compared to cells cultured in low serum without retinoic acid (mean * standard deviations of
triplicates from a representative experiment, total of three independent experiments, (D). Bar =5 um; x 20 magnification.
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RESULTS

H9c2 myoblasts differentiate to cardiac myocytes in
the presence of retinoic acid

It is well-established that chronic culture in low serum
media containing all-trans-retinoic acid prevents
transdifferentiation of embryonic cardiac H9c2 cells
into skeletal muscle [39]. We confirmed the phenotype
of embryonic myoblasts and monitored myogenesis and
cardiac myocyte formation by phase contrast
microscopy and RT-PCR (Figure 1). Freshly plated
cells maintained in media containing 10% FBS were
strictly =~ mononucleated myoblasts  that trans-
differentiated into skeletal muscle cells, as observed by
the parallel and regular elongated bundles, following a
seven day culture in media containing 1% FBS (Figures
1A and 1B). Culture of H9¢2 myoblasts in low serum
media and stimulation with 10 nM all-trans-retinoic
acid for seven days resulted in the maintenance of the
cardiac phenotype with the elongated cells connecting
at irregular angles (Figure 1C). Further confirmation of
the cardiac phenotype was obtained by investigating the
relative expression levels of MLC-2v, a gene which
displays absolute cardiac tissue specificity [40]. The
RT-PCR findings indicate a four-fold increase in the
expression of MLC-2v in cells cultured in low serum
media containing 10 nM all-trans-retinoic  acid
compared to cells cultured in low serum media without
retinoic acid (Figure 1D).

>

Doxorubucin induces a hypertrophic response in
H9c2 cardiac myocytes

The dose-dependent hypertrophic response in H9c2
cells induced by treatment with doxorubicin was
examined by measuring the cell volume and total
protein content (Figures 2A and 2B). Experiments
involved incubating cells with various concentrations
(0-2 uM) of doxorubicin for two hours followed a
further incubation in fresh media for a further 24 hours.
The findings indicated a dose-dependent increase in cell
volume and total protein content up to a concentration
of 1 uM doxorubicin. The change in phenotype and
enlargement of H9¢2 cardiomyocytes treated with 1 uM
doxorubicin is also evident by phase-contrast
microscopy (Figures 2C and 2D).

Doxorubicin  modulates the expression of
hypertrophy-associated genes in cardiomyocytes

To further characterise the response of H9c2 cells to
treatment with doxorubicin, the relative expression levels
of well known cardiac hypertrophy-associated genes,
namely MLC-2v, a-MHC and ANP, was examined by
RT-PCR (Figure 3). The findings indicated a dose-
dependent increase in the expression of MLC-2v and
ANP which are known to be upregulated in cardiac
hypertrophy [34-36]. Furthermore, doxorubicin induced
a dose-dependent decrease in the relative expression of
o-MHC representing another established hallmark of
cardiac hypertrophy [34, 37, 38].
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Figure 2. Doxorubicin (Dox) induces a dose-dependent hypertrophic response in rat H9c2 cardiomyocytes.
Cells were treated with the indicated concentrations of doxorubicin for two hrs and cultured in fresh media
for a further 24 hours prior to quantitation of cell volume (A) and total protein content per cell (B). Phase-
contrast images of control untreated H9c2 myocytes (C) compared to cells treated with 1 pM doxorubicin (2
hr treatment followed by 24 hour incubation in fresh media, D). Bar =5 pum; x 20 magnification.
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Figure 3. Doxorubicin modulates the expression of cardiac hypertrophy-associated genes in H9c2
myocytes. QT-PCR analysis of MLC-2v, a-MHC and ANP transcripts in cells treated with the indicated
concentrations of doxorubicin for 2 hours followed by a 24 hour treatment in fresh media. Fold change of
mRNA expression shown relative to untreated control H9c2 cells; mean * standard deviations of triplicates
from a representative experiment (total of three independent experiments) are indicated.
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Figure 4. Trichostatin A (TSA) potentiates doxorubicin-induced hypertrophic responses in H9c2
cardiomyocytes by modulating the expression of hypertrophy-associated genes. QT-PCR analysis of MLC-2v,
a-MHC and ANP transcripts in cells treated with 1 uM doxorubicin (Dox) for 2 hours followed by a 24 hour
treatment in fresh media in the presence and absence of 1 uM TSA. Fold change of mRNA expression
shown relative to untreated control H9c2 cells; mean * standard deviations of triplicates from a
representative experiment (total of three independent experiments) are indicated.
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Trichostatin A augments doxorubicin-induced
hypertrophy in H9¢2 cardiac myocytes

We investigated the effects of the prototypical and
potent, broad-spectrum histone deacetylase inhibitor,
Trichostatin A, on doxorubicin-induced hypertrophic
responses in H9c2 cells. Firstly, we investigated the
effects of a 24 hour exposure to 1 uM Trichostatin A
alone, on the relative expression levels of MLC-2v, a-
MHC and ANP. The findings indicate that Trichostatin
A alone causes a significant modulation of MLC-2v and
o-MHC gene expression, inducing a hypertrophic
response in H9¢2 cells (Figure 4). In addition, exposure
of the cells to a combination of Trichostatin A and
doxorubicin results in a greater increase in the relative
expression of the MLC-2v and a greater decrease in the
expression of a-MHC, compared to treatment with
either compound alone (Figure 4). In contrast, exposure
of the cells to 1 uM Trichostatin A for 24 hours does
not result in the modulation of the ANP gene.
Furthermore, the results indicate that Trichostatin A
does not affect the significant increase in ANP
expression observed when cells are exposed to 1 uM
doxorubicin alone (Figure 4).
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Trichostatin A enhances doxorubin-induced DNA
damage in cardiomyocytes

Having established that the inhibition of histone
deacetylase increases doxorubisin-induced hypertrophy,
we determined whether the effect of TSA on
cardiomyocytes conferred changes in DNA damage.
Phosphorylation of the histone variant, H2AX on Ser-
139 forming YH2AX, is a sensitive and reliable marker
of DNA double-strand breaks [41, 42]. Therefore, we
utilised this phosphorylation event to evaluate the
effects of Trichostatin A on doxorubicin-induced DNA
damage (Figure 5). Quantitation of yYH2AX foci
indicated that a one hour incubation with 1 uM
doxorubicin, followed by 24 hour incubation in fresh
media, results in the formation of a significant number
of DNA double-strand breaks — approximately 26 foci
per cell compared to an average of approximately 2 foci
per cell in untreated cells (Figures SA, 5Bi and 5Biii).
The findings also indicate a modest dose-dependent
increase in YH2AX foci following 24 hour incubation
with Trichostatin A (Figure 5A). Importantly, the
results show a significant enhancement of doxorubicin-
induced foci by Trichostatin A, particularly at 1 uM,

B

Figure 5. Trichostatin A (TSA) augments doxorubicin-induced accumulation of yH2AX foci in H9c2 cardiomyoctes. Cells
pretreated with the indicated concentration of TSA for 24 hours were exposed to 1 UM doxorubicin for 1 hour, followed by a
24 hour treatment in fresh media. Cells were then stained for YH2AX foci, images were acquired with a Zeiss LSM 510 Meta
Confocal microscope using 0.5 um Z-sectioning and foci were quantitated using Metamorph (A). Mean * standard deviations
from two independent experiments (total of five independent experiments) are indicated (*p<0.001). Immunofluorescence
visualization of yH2AX foci (B) in untreated H9c2 cells (i), cells treated with 1 uM TSA (ii), cells treated with 1 pM doxorubicin
(iiif) and cells treated with a combination of TSA and doxorubicin (iv) as described above. Bar = 2 um; x 63 magnification.
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highlighting a further mechanism by which the histone
deacetylase inhibitor may augment doxorubicin-induced
cardiotoxicity (Figures 5A and 5B).

DISCUSSION

Our findings indicate that Trichostatin A augments
doxorubicin-induced cardiac hypertrophy and DNA
double-strand induction in H9¢2 cardiac myocytes. We
used clonal embryonic ventricular H9¢2 myoblasts that
have been isolated and established by selective
passaging from BDIX rat heart tissue for our
investigation [43]. This cell line is used widely given
the ease of manipulation of the cells and the ability to
maintain the cardiac phenotype in the presence retinoic
acid has been well defined [39]. In accordance, with
previous studies, we confirmed maintenance of the
cardiac phenotype in the presence of retinoic acid and
examined transdifferentiation of H9c¢c2 myoblasts to
skeletal muscle, following culture in low serum media
without retinoic acid [39]. Furthermore, doxorubicin-
induced cardiac hypertrophy is well-characterized in

H9c¢2 cells, which is of importance for our
investigations [33, 44].
Cardiac hypertrophy, defined as an increase in

cardiomyocyte size, is an adaptive response to a number
of intrinsic (e.g. mutations of sarcomeric contractile
proteins in familial hypertrophic cardiomyopathy) and
extrinsic stimuli (e.g. hypertension). It is characterized
by increased  protein  synthesis,  sarcomeric
reorganization and re-expression of fetal regulatory
genes. Prolonged pathological cardiac hypertrophy is a
major cardiovascular endpoint and is strongly
associated with arrhythmias, heart failure and sudden
death.  Doxorubicin is thought to induce cardiac
hypertrophy, a dose-limiting side effect, by the
formation of free-radicals and lipid peroxidation [45].
This has lead to numerous investigations into the
potential of free radical scavengers to ameliorate the
effects of doxorubicin and more recently liposomal and
nanoparticle-based formulations of the drug have been
prepared [46-50]. In this context, an important link
between cell growth, senescence and hypertrophy has
been suggested and it has been previously shown that
doxorubicin-induced hypetrophy and senescence can be
inhibited by the immunosupresant, rapamycin [51-53].

In H92 cells, doxorubicin has been shown to induce a
hypertrophic response and this has been associated with
increased protein content and with morphological
changes which have been correlated with increases in
cell size and apoptosis [33, 44]. Therefore, these cells
have been used extensively to investigate doxorubicin-
induced cardiotoxicity and to evaluate the effectiveness

of protective compounds including, carvedilol,
rosmarinic acid and thromobopoietin [54-57]. Our
findings, are similar to those previously published and
indicate a dose-dependent increase in cell size and
protein in H9c2 myocytes following treatment with
doxorubicin (Figure 2) [33, 44]. In addition, there has
been an increase in our understanding of molecular
pathways  associated  with  doxorubicin-induced
cardiotoxicity in H9¢c2 cells. Since reinduction of the
fetal cardiac gene program is known to be a hallmark of
cardiac hypertrophy, we investigated the effects of
doxorubicin on expression of the MLC-2v, a-MHC and
ANP genes [58]. These serve as well-established
markers of cardiac hypertrophy [34-38, 58]. In
accordance with our expectations the findings indicate
that a dose-dependent doxorubicin-induced increase in
MLC-2v and ANP expression and a decrease in a-MHC
expression (Figure 3). The result for ANP is consistent
with a previous findings indicating that doxorubicin
causes an induction of the hypertrophic markers, ANP
and beta natriuretic peptide [59].

The antineoplastic properties of HDAC inhibitors are
caused, at least in part, by the accumulation of
acetylated nuclear core histones resulting in the altered
transcription of a small number of genes, some of which
important in regulating cellular proliferation, cell cycle
progression and apoptosis [22, 23]. Moreover, the
effects of HDAC inhibitors in malignant or transformed
cells can be attributed to altered activity of numerous
critical proteins including transcription factors and key
regulators of signaling cascades [14, 15]. Furthermore,
it is relatively well-established that HDAC inhibitors
augment the cytotoxic effects of ionising radiation and
chemotherapeutics, including doxorubicin, in cancer
cells in culture and in vivo [24-31, 60, 61]. However,
the effects of HDAC inhibitors in normal cells, and
more specifically in cardiac hypertrophy, require
clarification. For example, it has been shown that class
IT HDAC enzymes suppress cardiac hypertrophy and
this has been associated with repression of the activity
of myocyte enhancer factor 2 [62]. However, a number
of studies have indicated a favorable role for HDAC
inhibitors, particularly Trichostatin A, in cardiac
hypertrophy both in vitro and in vivo [63-65]. Of
particular importance, a previous study has indicated
that  Trichostatin A  inhibited agonist-induced
hypertrophy in neonatal rat ventricular myocytes and
this effect was correlated with histone hyperacetylation
and inhibition of fetal gene expression including o-
MHC [63]. However, in that particular study a
relatively low concentration of Trichostatin A (85 nM)
was investigated. Our findings using 1 pM Trichostatin
A indicate that the HDAC inhibitor alone induces a pro-
hypertrophic response and amplifies doxorubicin-
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induced hypertrophy (Figure 4). We chose to investigate
the higher concentration, which we have already
determined is known to induce robust histone
hyperacetylation and alterations in gene transcription as
well as cell-death in malignant cells [26, 27, 66].

In addition to altering cellular morphology and
modulating signaling pathways, doxorubicin has been
shown to induce DNA damage and induction of p53 in
H9c2 cells [67-69]. We investigated the effects of
Trichostatin A on doxorubicin-induced DNA double-
strand breaks using YH2AX as a molecular marker. Our
findings indicate that pre-treatment of H9¢2 cells with
Trichostatin A potentiates doxorubicin mediated DNA
damage, even at a relatively low concentrations of the
HDAC inhibitor (100 nM, Figure 5). Therefore,
augmentation of initial DNA damage represents an
additional mechanism by which HDAC inhibitors may
enhance the cytotoxicity of conventional antineoplastic
chemotherapeutics.

Overall, histone deacetylase inhibitors have emerged as
a new class of anticancer therapeutics, which are
anticipated to be most effective when used in
combination with conventional cancer therapies.
Although they have been shown to induce cell-death
and apoptosis preferentially in cancer and transformed
cells compared to normal cells, the effects of
combinations of HDAC inhibitors with other cytotoxic
agents in normal cells have not been well-investigated.
Our current findings which indicate that Trichostatin A
potentiates doxorubicin-induced cardiac hypertrophy
and DNA damage highlight the need for further
investigation of potential side effects associated with
new combination therapies for cancer.

MATERIALS AND METHODS

Cell culture, differentiation and treatment. The rat
embryonic ventricular myocardial, H9c2 cells were
obtained from the American Type Culture Collection
(Manassas, VA, USA) and were grown as monolayers
in Dulbecco’s modified Eagle’s medium (DMEM),
containing 10% fetal bovine serum (FBS, In Vitro
Technologies, Victoria, Australia), 100 U//ml penicillin
and 100 pg/ml streptomycin (Invitrogen, Carlsbad, CA,
USA), at 37C in a humidified atmosphere with 5%CO,.
Prior to confluence (typically 60-70%), cells were
passaged using 0.5% trypsin-EDTA (Invitrogen) and
centrifugation (250 x g for 5 minutes) and seeded at
ratios of 1:2 or 1:3 in DMEM containing 10% FBS for
24 or 48 hours. Cells were then cultured in DMEM
containing 1% FBS with (to maintain the cardiac
phenotype) or without (myogenic transdifferentiation)
10 nM all-trans-retinoic acid (Sigma-Aldrich, St. Luis,

MO, USA) for 7 days and the culture media was
changed daily.

The experiments described below, which required
doxorubicin (Ebewe Pharma, Unterach, Austria) and
Trichostatin A (Sigma-Aldrich) treatment, were
performed with cells that were cultured in 1% FBS
containing 10 nM all-trans-retinoic acid for 7 days. For
experiments involving treatment with doxorubicin, cells
were incubated with various concentrations (0-2 uM) of
the anthracycline for 2 hours (except for the YH2AX
immunofluorescence experiments described below;
cells were incubated with doxorubicin for 1 hour). The
cells were washed twice with phosphate buffered saline
without calcium and magnesium and were incubated for
a further 24 hours in fresh media. For relevant
experiments, H9c2 cells were treated with various
concentrations of Trichostatin A (0-1 uM) for 24 hours.
Trichostatin A was added to the media immediately
following the 2 hour incubation with doxorubicin,
except for the yYH2AX immunofluorescence experiments
described below, which involved a 24-hour pre-
treatment with the HDAC inhibitor prior to exposure to
doxorubicin for 1 hour.

Cell size and protein content. Adherent cells were
detached using 0.05% trypsin EDTA and rounded cells
were imaged using an Olympus (CKX41, Tokyo, Japan)
microscope and x 20 lens. Cell diameters were
measured using Image J (Fiji Version 1.44a) software
and cell volume was calculated using the equation for
the volume of a sphere (4/3 x 7 x radius®).

For determination of protein content, cells were
collected by trypsinization and lysed with mammalian
protein  extraction reagent (Thermo Scientific,
Rockford, IL, USA) and complete protease inhibitor
cocktail (Roche, Indianapolis, IN, USA) at 4°C for 30
minutes. The suspension was centrifuged at 13,000 x g
for 10 minutes at 4°C and the supernatant was collected.
Protein concentration in the total cell lysates was
measured at 595 nm using the Bradford assay with
bovine serum albumin standards [70].

Real-time polymerase chain reaction (RT-PCR). RNA
was extracted from H9c2 cardiomyocytes using Trizol
reagent (Invitrogen) and DNA was removed using the
Turbo DNA-free™ kit (Ambion Inc., Austin, TX, USA)
according to the manufacturer’s instructions. Total
RNA (1 pg) was converted to cDNA using random
primers and Moloney murine leukemia virus reverse
transcriptase (Sigma-Aldrich). Primers were designed
using Primer Express® Software v2.0: MLC-2v 5’-
CCTAACGTCACCGGCAACC-3’ and 5’-
TTTGGTTCACATCATCACCCA-3; a-MHC, 5’-
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ACACGAAGCGTGTCATCCAG-3’ and 5’-
GGTCCCCTATGGCTGCAAT-3’; ANP, 5’-
TCTTCCTCTTCCTGGCCTTTT-3" and 5’-
CGGGATTTGCTCCAATATGG-3’;  B-actin,  5’-
CCTCTGAACCCTAAGGCG-3’ and 5’-

AGGGACAACACAGCCTGGAT-3" (Sigma-Aldrich).
Fold changes (ACt) were calculated in the following
manner: the cycle number (Ct) of the target genes were
extrapolated using the software analysis program (SDS
1.9, Applied Biosystems) and was subtracted from the
Ct of the input control. All means, standard deviations
and statistics were calculated as a fold value.

yH2AX immunofluorescence. The number of YH2AX
foci in H9c2 cell nuclei following treatment with
doxorubicin, Trichostatin A and combination of
pretreatment with Trichostatin A  followed by
doxorubicin, were quantitated as described previously
[71].
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