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Abstract: The pro-oncogenic transcription factor STAT3 is constitutively activated in a wide variety of tumours that often
become addicted to its activity, but no unifying view of a core function determining this widespread STAT3-dependence
has yet emerged. We show here that constitutively active STAT3 acts as a master regulator of cell metabolism, inducing
aerobic glycolysis and down-regulating mitochondrial activity both in primary fibroblasts and in STAT3-dependent tumour
cell lines. As a result, cells are protected from apoptosis and senescence while becoming highly sensitive to glucose
deprivation. We show that enhanced glycolysis is dependent on HIF-1a up-regulation, while reduced mitochondrial activity
is HIF-1a-independent and likely caused by STAT3-mediated down-regulation of mitochondrial proteins. The induction of
aerobic glycolysis is an important component of STAT3 pro-oncogenic activities, since inhibition of STAT3 tyrosine
phosphorylation in the tumour cell lines down-regulates glycolysis prior to leading to growth arrest and cell death, both in
vitro and in vivo. We propose that this novel, central metabolic role is at the core of the addiction for STAT3 shown by so
many biologically different tumours.

INTRODUCTION growth factors and oncogenes [4], and is constitutively

tyrosine-phosphorylated in a high percentage of
Signal Transducers and Activators of Transcription tumours and tumour-derived cell lines of both liquid
(STAT) mediate the signaling downstream of cytokine and solid origin, where its inhibition often triggers
and growth factor receptors, and several of them play a growth arrest and/or cell death [1,2,5,6]. Indeed, STAT3
role in cancer [1,2]. Once activated by tyrosine- tyrosine phosphorylation and consequent transcriptional
phosphorylation, STATs form anti-parallel dimers that activation was shown to be required for cell
concentrate into the nucleus regulating the expression of transformation downstream of several oncogenes, the
target genes [3]. STAT3 is activated by cytokines, prototype being v-Src [6-8]. Although STAT3-mediated

www.impactaging.com 823 AGING, November 2010, Vol.2 No.11



gene expression signature is mostly consistent with
tumour cell survival and proliferation [9,10], it varies in
different tumour types, and a core activity determining
addiction to STAT3 by a wide spectrum of biologically
distinct tumors has not yet been identified [9]. In addition
to its canonical nuclear functions, which require tyrosine
phosphorylation, DNA binding and transcriptional
activity, STAT3 was also reported to exert non-nuclear
functions. In particular, it was shown to localize to
mitochondria, where it regulates cellular respiration via a
yet uncharacterized mechanism [11]. Moreover, we have
recently shown that mitochondrial localization requires
Serine 727 but not nuclear translocation, DNA binding or
tyrosine phosphorylation [12]. This activity, rather than
canonical activation, is required for RAS-dependent
oncogenic transformation. Thus, STAT3 exerts a central
role in mediating tumoural transformation downstream of
many different oncogenes and growth factors, via both its
canonical transcriptional functions and its non-canonical,
non-nuclear activities.

Most tumour cells share the peculiar feature of
switching their metabolism towards aerobic glycolysis,
i.e. they increase glycolysis and decrease oxidative
phosphorylation even in conditions of high oxygen
tension [13-15]. This phenomenon, known as the
Warburg effect, is thought to lend a metabolic
advantage to highly proliferating cells when nutrient
supply is not limiting, as it favours the synthesis of
essential cellular components required for fast cell
duplication. Moreover, pre-adaptation to a glycolytic
metabolism is thought to represent an advantage for
solid tumours [16], which are often exposed to
fluctuating oxygen tension, and reduced cellular
respiration may result in lower production of ROS and
protection from apoptosis [16-18]. Accordingly,
strongly glycolytic tumour cells are critically dependent
on glucose, and glycolysis inhibitors have been
explored for therapy [19]. The oxygen sensor HIF-1a is
a highly unstable protein that becomes stabilized under
hypoxia, leading to the activation of glycolysis and the
down-regulation of mitochondrial respiration [20,21].
HIF-1a protein level is also increased under normoxia
downstream of oncogenes and growth factor receptors
via mTor-mediated induction of protein translation,
which is known to occur downstream of PI3K activation
[22,23], and indeed increased HIF-lo activity is
recognized as a major factor contributing to the
Warburg effect [21,24-26]. Interestingly, several reports
have linked HIF-1a induction with STAT3 activation,
proposing either a post-translational or a transcriptional
mechanism [27-29]. In particular, H. Yu and co-authors
have recently shown that STAT3 activity is required for
the hypoxia-induced increase of HIF-1la protein levels
downstream of an activated Src oncogene, acting at the

level of promoter transcription [28].

We have recently generated knock-in mice expressing
physiological levels of the constitutively active STAT3C
mutant form [30], and shown its in vivo oncogenic
potential [31]. In this work we report the analysis of
primary mouse embryonic fibroblasts (MEF) derived
from Srar3“C or """ embryos. Stat39C cells show an
HIF-1o-dependent increased glycolysis and an HIF-1a-
independent reduction in mitochondrial respiration. This
metabolic switch allows cells to proliferate faster and to
be protected from apoptotic and senescence stimuli while
becoming highly sensitive to glucose deprivation. Impor-
tantly, we can show that STAT3 plays an important role
as a master metabolic regulator also in STAT3-dependent
human cancer cell lines, offering new insights into its
core role as a transcription factor in human cancer.

RESULTS

STAT3 constitutive activation elicits pre-oncogenic
features in Stat3“° MEFs

We have previously shown that STAT3C displays
increased nuclear localization, prolonged activation and
enhanced transcriptional activity as compared to the
wild-type molecule in MEFs, liver and mammary
tumour-derived cells [31]. We confirmed increased
localization to the nucleus by immunofluorescence
(Figure 1A). Compared to the wild type protein,
STAT3C also displays prolonged tyrosine-phospho-
rylation upon IL-6 treatment, as shown by the enhanced
nuclear signal of the phosphorylated form detected 24
and 48 hours after stimulation. Srar3“C cells grow faster
than their wild type controls (Figure 1B) and display an
accelerated cell cycle, observed as a more rapid transit
through S-phase (Supplementary Figure S1A). Even
though growing as a monolayer, they reach higher cell
density at confluence (Figure 1B and 1D, phase contrast)
and they are highly resistant to apoptosis induced by
treatment with H,O, (Figure 1C), starvation, menadione
or UV irradiation (Supplementary Figure SI1B-E).
Moreover, spontaneous senescence is strongly delayed,
as shown by beta-galactosidase staining three and six
weeks post-confluence (Figure 1D). While by six weeks
all Stat3"™"T cells were dead, Stat39C cells started to
show beta-gal positivity but were able to survive and
resume proliferation if passaged (MD, unpublished
observation). We then assessed the production of
Reactive Oxygen Species (ROS). While ROS
accumulation progressively increased with passages in
the Stat3"""T cells, it remained constant in the Stat39¢
cells (Figure 1E). The consequently reduced oxidative
stress may account at least partly for the observed
resistance to senescence and apoptosis.
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Figure 1. Phenotype of the Stat3™" MEFs. Primary MEFs were derived from Stat3™" or Stat3 embryos and experiments performed

on at least three independent samples per genotype. (A) Constitutive nuclear localization of STAT3C. Cells of the indicated genotypes
were treated or not with IL-6 and stained for total or tyrosine-phosphorylated STAT3. Nuclei are stained in blue with Hoechst. (B)
Increased growth rates. 1.5%10° cells were plated and counted at the indicated times. Data are mean cell numbers + s.e.m.. (C) Apoptosis
protection. Cells were treated with H,0, for 16 hours, photographed in phase contrast and stained with Annexin V. Numbers represent

the percentage + s.e.m. of Annexin V positive cells. (D) Delayed senescence. Phase contrast: note different viability at 0 and 3 weeks post-

confluence. X-Gal: B-galactosidase activity assessed at 3 and 6 weeks post-confluence. Stat3

WIWT cells were all dead at 6 weeks. (E)

Decreased ROS production. Cells were regularly passaged and intra-cellular ROS production measured at passage (P) 1, 3 or 4.

Differential gene expression in the Sfar3“C and were more represented, and many of them belonged to
Stat3""""T MEFs GO categories related to mitochondrial function (Figure

. . 2B, D and Supplementary Figure S2). Conversely,
Gene expression profiling revealed about 1000

differentially expressed genes that were organized
according to Gene Ontology (GO) annotations (Figure
2A, B). Star3““ MEFs showed significant up-regulation
of genes included in GO categories related to known
STAT3 functions such as immune regulation, cell
adhesion, response to wounding and growth factor bind-
ing (Figure 2A, C). Interestingly, down-regulated genes

several genes involved in glycolysis were highly
expressed in the Star3“C cells including pyruvate
dehydrogenase kinase-1 (Pdk-1). PDK-1 is a key
glycolysis regulator that acts by inactivating the
mitochondrial pyruvate dehydrogenase (PDH) complex
[24], thus limiting the amount of pyruvate entering the

citric acid cycle (Figure 2C).
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Figure 2. Gene Ontology (GO) analysis on genes differentially expressed in stat””"T and Stat37 cells. Selected over-represented Gene

Ontology functional categories in the lists of genes up- (A) and down-regulated (B) in the Stat37C versus the Stat””"" cells are shown.

The statistical significance of the over-representation was evaluated with a one-sided exact Fisher test. The length of each bar is
proportional to the number of differentially expressed genes in the functional category, as indicated by the numbers on the right side,
and the shaded portion represents the same number as expected by chance. Numbers in brackets represent the percentage of up- or
down-regulated genes that are annotated to the functional category. (C) and (D) Validation of some microarray data by Tagman RT-PCR
quantification of the indicated RNAs. Data are shown as mean values * s.e.m. of the indicated genes in cells derived from at least three
independent embryos per genotype. (C) OSM-R, oncostatin M receptor; PDGF-Ra, platelet-derived growth factor receptor; SOCS3,
Suppressor of Cytokine Signaling-3; PDK-1, pyruvate dehydrogenase kinase-1. (D) ATP-5L, ATP synthase, H+ transporting, mitochondrial
FO complex, subunit G; FH, fumarate hydratase; NDUFB4, NADH dehydrogenase (ubiquinone) 1 beta subcomplex subunit 4, NDUFAG,
NADH dehydrogenase (ubiquinone) 1 alpha subcomplex subunit 6. *, p < 0,01. Empty bars or filled bars, stat3""" or Stat3“° MEFs.
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Figure 3. Glycolytic metabolism of Stat3”~ MEFs. The histograms represent mean values * s.e.m. of three independent
experiments. Empty bars or filled bars, stat3V™ or Stat3%C MEFs respectively. *, p < 0,01. (A) Histograms show the pyruvate
dehydrogenase (PDH) activity expressed as percentage of that detected in the stat3"™T MEFs. (B) Tagman RT-PCR
quantification of HIF-1a, hypoxia-inducible factor-1a; GLUT-1, glucose transporter-1; PFK-L, phospho-fruktokinase-liver type;
ENO-1, enolase-1. (C,D) HIF-1a protein quantification. (C) Immuno-precipitation followed by Western blot of total protein
extracts with anti-HIF-1a antibodies. ACTIN was quantified in the total extracts as a loading control. The numbers at the top of
the lanes represent the quantification of the HIF-1a-specific signals upon normalization to 1gGs. (D) Western blot. Cells were
treated or not with Cobalt Chloride (CoCl,) for 4 hours and nuclear protein extracts were stained for HIF-1a and ACTIN as an
internal control. The numbers at the top of the lanes represent the quantification of the HIF-la-specific signals upon
normalization to ACTIN. (E) Lactate production was measured in the culture medium as a function of concentration, time and
cell number. (F) Glucose intake was calculated as the difference in glucose concentration in the medium before and after cell
culturing. (G,H) Increased sensitivity of Stat3“C MEFs to glucose deprivation. (G) Cells were grown for 48 hours in medium with
no glucose and cell viability evaluated by trypan blue staining. Numbers show the percentage + s.e.m. of trypan blue positive
cells. (H) Cells were treated for 48 hours with the glucose analogue 2-DG. Cell death was measured by flow cytometry and
represented as the portion of cells in the sub G1/GO0 region upon propidium iodide staining.

Star3““ MEFs display features of aerobic glycolysis can be transcriptionally induced by STAT3 [27].

Indeed, Stat3““ MEFs show significantly increased Hif-
In agreement with the observed Pdk-1 up-regulation, loo. mRNA expression (Figure 3B). HIF-la protein
PDH activity in Stat3C/C cells was reduced by about levels were also elevated’ as shown by immuno-
50% (Figure 3A). Pdk-1 is a known target of the precipitation of whole cell extracts with anti-HIF-1a
hypoxia inducible factor (HIF)-1a [32], which in turn antibodies followed by Western blot (Figure 3C).
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Accordingly, we also detected up-regulation of several
known HIF-1a target genes [21] such as the glucose
transporter Glut-1 and two key glycolytic enzymes,
phospho-fruktokinase L-type (Pfk-L) and enolase-1
(Eno-1) (Figure 3B). In agreement with the observed
increased expression of HIF1-a and of several of its
targets encoding proteins involved in glycolysis,
Stat3“ cells exhibit a glycolytic phenotype, producing
higher amounts of lactate (Figure 3E) and enhancing

their glucose intake (Figure 3F). Accordingly, they are
highly sensitive to glucose deprivation as compared to
their wild type controls, as shown both by cultivating
cells in glucose-free medium (Figure 3G) and by
treating them with 2-Deoxy-D-glucose (2-DG), a
glucose analogue that inhibits glycolysis [19] (Figure
3H). These features are highly reminiscent of the well-
known Warburg effect, or aerobic glycolysis, shared by
most cancer cells [13,15].
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Figure 4. Decreased mitochondrial activity and enhanced ATP/ADP ratio of Stat3

/€ MEFs. (A) Mitochondrial Ca** homeostasis.

MEFs of the indicated genotypes were transduced with a mitochondria-targeted aequorin (AEQ), which was measured then
upon challenging with 100 pM ATP as indicated. (B) ATP—induced changes in ATP concentration in mitochondria. MEFs were
transiently transfected with a mitochondria-targeted luciferase 36 hours prior to ATP measurement, and data expressed as a
percentage of the initial value. (A,B) Data are representative of at least 10 traces, each from 3 independent experiments. (C)
Respiratory chain activity measured with resazurine. *, p < 0.01 (n=6). (D) Maximal respiratory chain activity, measured with the
use of resazurine in the presence of 300nM FCCP. *, p < 0.01 (n=6). (E) Mitochondrial membrane potential. *, p < 0.05 (n=9). (C-

E) Data are mean + s.e.m., expressed as percentage of the value detected in the Stat3
expressed as mean + s.e.m. of four independent samples per genotype. *, p < 0.05. (C-F) Empty bars or filled bars, Stat3

WI/WT MEFs. (F) ATP/ADP ratio was

wt/wt
7 or

Stat3”C MEFs respectively. (G) Western blot with antibodies against specific ETC components. Cl subunit NDUFBS, complex I;
ClI-30kD, complex Il; CllI-Core protein, complex IlI; CIV subunit, complex IV; CV alpha subunit, complex V. Actin and SOD2 were
used as internal control for total and mitochondrial content. (H) Quantification of the different complexes, shown as mean +
s.e.m. of three independent samples per genotype. P values are shown.
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Reduced mitochondrial activity in Stat3““ MEFs

Cancer cells displaying aerobic glycolysis also co-
ordinately down-regulate cellular respiration, although
the mechanism is not entirely clear [33]. The significant
down-regulation of nuclear-encoded genes involved in
mitochondrial function observed in the Star3““ MEFs
(Supplementary Figure S2), together with their
decreased PDH activity (Figure 3A), may lead to the
reduction of mitochondrial respiration. In order to
assess this, we decided to compare mitochondrial-
specific Ca®" uptake and mitochondrial ATP production
in the Star3““ and Star3"™"" cells. 1t is indeed well
known that the mitochondrial membrane potential acts
as the driving force for the transporter responsible for
mitochondrial Ca*" uptake [34]. Inhibition of the
respiratory chain, which in turn reduces the
mitochondrial membrane potential, abolishes the ability
of mitochondria to accumulate Ca®*, making Ca”" influx
a well acce/pted measure of mitochondrial activity [35-
37]. Star3““ MEFs showed reduced Ca®" uptake upon
ATP stimulation (Figure 4A). Accordingly, both mito-
chondrial ATP production and basal respiratory chain
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activity were reduced in the Star3““ MEFs (Figure 4B,
C). This correlated with lowered maximal respiratory
chain activity (measured in the uncoupled state) and
slightly reduced mitochondrial membrane potential
(Figure 4D, E), which in turn may explain the
diminished ROS production observed in the Srar3“¢
MEFs (see Figure 1E). Moreover, in agreement with the
microarray data, the protein levels of representative
components of the Electron Transport Chain (ETC),
particularly those belonging to complexes IV and V,
were reduced in the Star3“C cells (Figure 4G). Taken
together, these data demonstrate that Stat3““ MEFs
feature a reduction of their mitochondrial metabolism,
caused at least in part by the lower expression of ETC
components. Despite their lower ATP production,
Stat3°“ cells show an increased ATP:ADP ratio (Figure
4F), suggesting a favourable energy balance similar to
that observed in glycolytic tumour cells and able to
support their increased proliferation rates. It could be
argued that the STAT3C mutant might display defective
mitochondrial functions, which in turn may affect
mitochondrial activity in the Star3““ MEFs. Several
lines of evidence suggest however that STAT3C mito-

Stat3w™T

Stat3%°

Figure 5. STAT3-mitochondrial localization and mitochondria morphology. (A) Intracellular localization of Stat3.
Sub-cellular fractions were isolated and protein extracts were prepared as described in M&M. Western blot
analysis was performed using antibodies against STAT3, and VDAC-1 or B-TUBULIN were used as mitochondrial
and cytoplasmic markers, respectively. Tot, whole unfractionated extract; Cyto, cytoplasmic fraction; Mito,
mitochondrial fraction. (B) Effects of expressing a mitochondria targeted STAT3 form (MTS-Stat3) on
mitochondrial Ca>* homeostasis. MEFs were co-transfected with mitochondria-targeted aequorin (AEQ) and MTS-
Stat3, and AEQ measured upon challenging with 100 uM ATP. Traces are representative of at least 10 from 3
independent experiments yielding similar results. (C) Mitochondrial morphology was visualized by loading MEFs
with 10 nM TMRM. The field of cells is representative of > 50 observations from 2 independent experiments.
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chondrial functions are unaffected, and thus that the
reduced mitochondrial activity of the Srar3““ MEFs is
likely a direct effect of STAT3C constitutive transcript-
tional activity. First, the mitochondrial localization of
STAT3C was indistinguishable from that of the wild type
protein, as shown by fractionation experiments (Figure
5A). Second, ectopic expression of mitochondria-targeted
STAT3 (MTS-STATS3), which normalized the defective
respiration of RAS-transformed Stat3” MEFs [12], could
not rescue mitochondrial Ca®"-uptake in the Stat3“¢
MEFs (Figure 5B). Finally, both mitochondrial
morphology and mass were normal in the Stat3““ MEFs
(Figure 5C and not shown), as were the levels of Hif-1a,
Pdk-1 and lactate in Staz3’” MEFs (Supplementary Figure
S3D, E). Since neither nuclear nor mitochondrial STAT3
are required to maintain basal glucose metabolism and
HIF-1o levels, the observed mitochondrial phenotype
cannot be caused by a defective mitochondrial or nuclear
function of the STAT3C protein.
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Hif-1a is responsible for the induction of aerobic
glycolysis but not for the reduced mitochondrial
activity of Star39C cells

The up-regulation of HIF-1a. observed in the Stat3¢
cells appears to occur mainly via increased expression
rather than protein stabilization, since treatment with the
iron chelator CoCl,, which blocks HIF-1o degradation,
triggered much higher protein accumulation in the
Stat3“C cells than in the wild type counterparts (Figure
3D). Another well-known mechanism of HIF-1a
induction is the mTOR-dependent enhanced translation
occurring downstream of PI3K activation [22,23]. PI3K
did not however appear to be involved in this context,
since its inhibition could not affect either the expression
of Hif-loo and Pdk-1, or the production of lactate
(Supplementary Figure S3A-C). Therefore, STAT3-
mediated induction of Hif-loo mRNA levels seems to
fully account for its increased expression.

PFK-L

ENO-1

ATP

1204

S 100
80
60
40
20

—  Statawmwr
-- Stat3crc

—- Stat3"™Tsh-HIF-1a
-~ Stat3% sh-HIF-1a

[Ca?]m

60 seconds

e 27
sh-HIF-10.

¢ MEFs. Empty

MEFs respectively, either silenced or not for HIF-1a (sh-HIF-1a), represent

mean values + s.e.m. of three independent experiments. *, p < 0,001. (A) Tagman RT-PCR quantification of the
indicated mRNAs. (B-D) Lactate production, glucose intake and sensitivity to glucose deprivation were measured as
described in the legend to Fig. 3. (E) Mitochondrial ca® homeostasis, measure as described in the legend to Figure 4.
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Interestingly, the silencing of Hif-1aw normalized the In contrast to the glycolytic metabolism, which was

glycolytic metabolism of Stat3“C MEFs, down- entirely dependent on Hif-1a, the mitochondrial Ca”'-
regulating Pdk-1, Glut-1, Pfk-L and Eno-1 mRNAs but uptake by Star3“C cells was completely unaffected by
not the glycolysis-unrelated STAT3 target Socs3 Hif-1a silencing and consequent Pdk-1 down-regulation
(Figure 6A). Accordingly, lactate production, glucose (Figure 6E and data not shown). Additionally, the
intake and sensitivity to glucose deprivation were silencing of Hif-1a could not rescue the expression of
significantly reduced (Figure 6B-D). The expression of nuclear genes encoding for mitochondrial proteins
STAT3C, which mimics the constitutive STAT3 (Supp]ementary Figure SZB) These data c]ear]y
activation observed in many tumours, is thus sufficient demonstrate that the up-regu]ation of glycolysis and the
to promote aerobic glycolysis, acting at least in part down-regulation of mitochondrial function of Srar3“¢
through transcriptional induction of Hif-1a.. Of note, MEFs, both mediated by constitutively transcriptionally
Hif-1a silencing lowered the expression levels of the active STAT3, occur via independent pathways. The
Hif-1a target genes as well as the production of lactate leading cause of reduced mitochondrial activity appears
and of glucose intake also in the Star3"”"" MEFs, to be the STAT3-mediated down-regulation of nuclear
suggesting that Hif-1a plays a role in promoting basal genes encoding for mitochondrial proteins, mirrored by
levels of glycolysis also in wild type cells. the lowered expression of ETC components.
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mitochondrial Ca®* response was assessed as described in the legend to Figure 4, in cells either treated or not with S3I for 12 hours. (C) STAT3
sub-cellular localization was assessed as described in the legend to Figure 5. (D) Tumour ®r_FDG uptake. Mice were inoculated with MDA-MB468
cells and tumours let grow up to 60 mm? prior to S3I and ¥ DG treatment. Images were acquired at the indicated times after the first S3I
treatment. Shown are coronal section of tumour of one (out of five) S3I-treated (8 days) and one (out of three) control mice. Yellow arrows
indicate the tumours. (E) The upper graph represents the variation of glucose uptake normalized over tumour size at the indicated times after
starting S3I treatment. % of Bc_FDG uptake= (SuVgy-, - SUVy=0)*100/ Suvy-o. The lower graph represents the mean tumour volume * s.e.m. at the
same times. Note decreased glucose uptake at day 3 (d3) and 8 (d8) upon S3I treatment, compared to constant tumour volume. (F) Co-
operativity between glucose deprivation and S3I treatment. Cells were treated for 48 hours with the glucose analogue 2-DG and S3lI, either alone
or in combination, at sub-optimal concentrations. Data are shown as the percentage + s.e.m. of Annexin V positive cells. *, p < 0,05 (n=4).
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STAT3-addicted tumour cell lines undergo STAT3-
dependent aerobic glycolysis

Our data suggest that constitutively active STAT3 can
act as a central mediator of aerobic glycolysis, which
would explain the general STAT3 addiction of cancer
cells. To test this idea, we assessed the effects of
inhibiting STAT3 on the glycolytic metabolism and
mitochondrial activity of three STAT3-dependent
epithelial tumour cell lines, MDA-MB468, SKBR3 and
DU145, all of which display constitutively active
STAT3 [38]. Inhibition of STAT3 activity with the S31I
compound [2], which interferes with the STAT3 SH2
domain and consequently with STAT3 tyrosine
phosphorylation and transcriptional activity, causes
massive apoptosis after 24 hours, but 12 hours treatment
is sufficient to strongly down-regulate constitutive
STAT3  phosphorylation avoiding cell  death
(Supplementary Figure S4A, B). In all cell lines, 12
hours S3I treatment dramatically lowered Hif-1o and
Pdk-1 expression and decreased lactate production
(Figure 7A and Supplementary Figure S4B, C), at the
same time rescuing mitochondrial-Ca®" uptake (Figure
7B and Supplementary Figure S4B, C). As expected,
mitochondrial STAT3 localization, known to be
independent of tyrosine phosphorylation, was not
modified (Figure 7C). Gene expression, lactate
production and mitochondrial-Ca®" uptake were
completely unaffected by STAT3 inhibition in T47D
cells, which do not display constitutively active STAT3
and are insensitive to STAT3 inhibition (Supplementary
Figure S4A, D). Thus, tumour cell lines with
constitutive STAT3 phosphorylation and dependent on
STATS3 for survival exhibit a strictly STAT3—dependent
aerobic glycolytic Cphenotype, comparable to that
observed in the Star3““ MEFs.

Similar to what observed in the Stat3“¢ MEFs, Hif-1a
silencing down-regulated Pdk-1 expression and lactate
production but not mitochondrial-Ca*" uptake in MDA-
MB468 cells (Figure 7A and data not shown), suggesting
that also wild type STAT3, when constitutively activated
in cancer, can induce aerobic glycolysis via both HIF-1a.-
dependent and —independent mechanisms.

STAT3-dependent glycolysis also occurs in vivo

To confirm the fundamental role of STAT3 in
regulating the glycolytic switch of STAT3-dependent
tumour cells in vivo, glucose uptake by xenografted
MDA-MB468 tumours was measured in the presence or
absence of the S3I treatment by means of PET analysis
using the radioactive glucose-analogue '“F-FDG (PET-
FDG, Figure 7D). Treatment was started when the
tumours had reached the volume of 80 mm® (day 0).

The tumours of control mice displayed higher increase
in glucose uptake than in tumour volume, as shown by
the sharply enhanced FDG signal even upon
normalization to tumour size (Figure 7E, upper panel).
In contrast, tumour growth was arrested and glucose
uptake reduced upon S3I treatment already at 3 days
(Figure 7E), suggesting that inhibition of STAT3
activity has prominent effects on glucose metabolism
also in vivo. Interestingly, treatment of MDA-MB468
cells with a combination of S3I and 2-DG at sub-
optimal doses yielded cooperative effects on cell
apoptosis, suggesting the potential therapeutic
advantage of combining glucose deprivation and
STATS3 inhibition (Figure 7F).

DISCUSSION

Most cancer cells share the feature of metabolizing
glucose by aerobic glycolysis —the Warburg effect- and
the inducible o subunit of the HIF-1 transcription factor
lies at the crossroad of both anaerobic and aerobic
glycolysis [26]. Indeed, HIF-la induces all know
glycolysis-related  genes  while  down-regulating
mitochondrial activity via PDK-1 [21]. HIF-1a activity
is thought to be controlled mainly at the protein level,
being highly unstable under normal oxygen tension
since it is continuously synthesized and then modified
via prolyl hydroxylation followed by von-Hippel-
Lindau (VHL)-mediated proteasomal degrada-tion [39].
Hypoxic conditions decrease the activity of prolyl
hydroxylases (PHDs), thus inhibiting the interaction
with VHL and resulting in protein stabilization [40]. On
the other hand, growth factors and oncogenes can also
increase HIF-lo  activity via enhanced protein
translation mediated by PI3K-induced mTOR [22,23].
STAT3 has been proposed to contribute to HIF-la
protein stabilization either via Akt activation [27] or via
interaction with VHL and consequent inhibition of
VHL-HIF-1a interaction [29]. Recently, however,
STAT3 was shown to enhance HIF-laa RNA
transcription under hypoxia, since it was required to
mediate HIF-1a up-regulation (both protein and RNA)
upon hypoxic stimulation of v-Src-transformed cells,
and was able to bind to the Hif-/a promoter [28]. For
the first time we show here that even under normoxia
STAT3 constitutive transcriptional activity is sufficient
to induce a two-fold increase in Hif-loo mRNA levels,
in turn resulting in similarly higher protein levels. The
need for constitutive activation is built into the intrinsic
instability of the HIF-la sensor, and is likely to
represent an important functional difference between
acute and constitutive STAT3 activity. As mentioned in
the results section (Figure 3D and Supplementary
Figure S3A-C), neither protein stabilization nor PI3K-
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mediated translation enhancement appear to play a role
in the higher HIF-lo levels detected in the Stat3“C
MEFs. This relatively low HIF-lo induction is
sufficient (and necessary, as shown by the silencing
experiments) to drive a metabolic switch to aerobic
glycolysis, i.e. the Warburg effect. Interestingly, while
under hypoxic conditions HIF-la actively down-
regulates mitochondrial activity via PDK-1 induction,
the increase in PDK-1 detected in the Star3““ MEFs is
not apparently involved in their reduced mitochondrial
activity, which cannot be rescued by Pdk-1
normalization upon Hif-1a silencing. Thus, as depicted
in Figure 8, constitutive STAT3 activity, occurring in a
wide variety of tumours downstream of many
oncogenic signals, is sufficient to determine the switch
to aerobic glycolysis via two distinct nuclear
mechanisms: i) the induction of Hif-la transcription,
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which in turn up-regulates genes involved in glycolysis.
This allows fast proliferation and highly increases
glucose consumption, leading to glucose dependence,
just like all known glycolytic cancer cells; ii) the down-
regulation of mitochondrial activity, which is HIF-1a-
and PDK-1-independent and apparently caused by the
STAT3-mediated reduced expression of many nuclear
genes encoding for mitochondrial proteins, leading to
reduced levels of ETC components. At present, we do
not know if this is due to a direct effect of STAT3 on
their transcription, or, more likely, to the indirect
regulation of a common repressor or a targeting
microRNAC(s). The reduced mitochondrial activity may
contribute to the decreased ROS accumulation observed
in the Star3“ MEFs, which in turn is likely to trigger
the high resistance of these cells to apoptosis and
senescence, two hallmarks of cellular transformation.

STATS3) ™,

XOOCK XOOCK
HIF-1a Mitochondrial genes
(+ other glycolytic genes?)

Figure 8. STAT3 acts as a central mediator of cell metabolism through both HIF-1a-dependent and -independent mechanisms. Many
oncogenic signals can trigger the constitutive activation of STAT3, either directly or indirectly. Activated STAT3 migrates into the
nucleus, where it up-regulates HIF-1a expression and lowers the expression of mitochondrial mRNAs, either via direct or indirect
mechanisms. HIF-1a induces the transcription of different genes involved in glycolysis; the glucose channel GLUT-1 enhances glucose
intake; the kinase PDK-1 reduces the conversion of pyruvate into Acetyl-CoA, favouring its catabolism into lactate; other enzymes,
such as ENO-1 or PFK-L, sustain glycolysis by improving glucose metabolism. Increased glycolysis results in enhanced lactate
production, and allows the cell to maintain a high ATP/ADP ratio even in the presence of reduced mitochondrial respiration. All
together, this results in enhanced proliferative potential. The decreased mitochondrial activity, insensitive to HIF-1a silencing, is
instead predominantly caused by the down-regulation of nuclear-encoded mitochondrial genes and leads to reduced oxidative
metabolism, which in turn prevents ROS over-production protecting the cell from senescence and apoptosis. The metabolic switch
from oxidative phosphorylation to aerobic glycolysis, typical of most cancer cells, makes cells highly sensitive to glucose deprivation.
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STAT3 emerges as a central player in determining the
switch to aerobic glycolysis, and this in turn can explain
why so many biologically distinct tumours are addicted
to its activity for continuous survival and growth even
though sometimes do not strictly require it for
transformation [41]. It is indeed well known that tumour
cells displaying the Warburg effect become addicted to
high glucose influxes, and that enhancing aerobic
glycolysis can favour tumoural transformation. This
idea is corroborated by the observation that several
tumour cell lines previously shown to be strictly
STAT3-dependent Cpresent a phenotype super-imposable
to that of the Star3““ MEFs, with high glycolysis levels
and low mitochondrial respiration, both mediated by
STAT3 transcriptional activity. Indeed in these cells,
but not in similar cells not displaying constitutive
STAT3 activation and accordingly independent of
STAT3 for survival, inhibition of STAT3 activity
normalizes glycolysis prior to leading to apoptotic cell
death, suggesting that STAT3 addiction is at least partly
linked to STAT3-induced aerobic glycolysis. Exactly as
observed in the Stat3“° MEFs, while enhanced
glycolysis is dependent on HIF-la, mitochondrial
respiration is unaffected by HIF-la silencing.
Importantly, the observation that treatment with the S31
STAT3 inhibitor lowers glucose uptake by tumours
prior to arresting their growth, suggests that a similar
mechanism for STAT3 addiction occurs in vivo as well.
It is puzzling why cancer cells should specifically
become dependent on STAT3 for aerobic glycolysis,
since most STAT3-activating oncogenic signals can
also activate PI3K, a known mediator of this
phenomenon. Possibly, STAT3 activity is more
specific/less dispensable since it can at the same time
regulate glycolysis and mitochondria. Alternatively,
even when not the only factor inducing the Warburg
effect, its contribution may nevertheless be crucial.
Further studies will be required to clarify this issue.

Taken together with the metabolic role of mitochondrial
STAT3 recently reported by us and others [11,12],
STAT3 emerges as a central regulator of cell
metabolism in both transformed and non-transformed
cells, acting both in the nucleus and in mitochondria. In
the nucleus, as shown here, STAT3 constitutive
activation/tyrosine phosphorylation, which is known to
occur downstream of many oncogenic pathways,
promotes aerobic glycolysis and reduces mitochondrial
respiration without affecting mitochondrial mass or
morphology. This activity is likely to account for the
addiction to STAT3 observed in many tumours,
displaying a variety of abnormally activated oncogenic
pathways that share the ability to induce STAT3
tyrosine phosphorylation and aerobic glycolysis. In
contrast to its nuclear counterpart, mitochondrially

localized STATS3 is not phosphorylated on tyrosine 705,
the hallmark of transcriptional activation, but on Serine
727, promoting oxidative phosphorylation in both non
transformed pro-B cells [11] and Ras-transformed MEF
cells [12]. Moreover, it favours aerobic glycolysis
downstream of Ras oncogenes, which trigger Serine-
STAT3 phosphorylation, and this activity is required for
Ras-mediated transformation [12]. Although the roles
played by nuclear or mitochondrial STAT3 may seem
contradictory, it must be borne in mind that specific
phosphorylation on tyrosine or serine occurs upon
distinct stimuli and under distinct physiological or
pathological conditions, leading to two functionally
distinct molecules. Our results suggest indeed that it
will be important to distinguish between the nuclear and
mitochondrial actions of STAT3 when designing
STATS3 inhibitors for therapeutic applications.

We propose that this central metabolic role played at
multiple levels may be at the core of the addiction for
STAT3 shown by so many biologically different
tumours. In addition, it may also contribute to the
protective role described for this factor in tissue damage
following ischemia-reperfusion or heart infarction
[42,43].

Finally, our data suggest that a combination of STAT3
inhibition with glucose deprivation may represent a
valuable therapeutic strategy in cancer, providing a
mean to hit fundamental metabolic functions of a wide
variety of STAT3-dependent, highly glycolytic tumours
more effectively than STAT3 inhibition alone.

METHODS

Mice, MEFs preparation and culture, cell lines and
treatments. Staz3°C mice [31] were maintained in the
transgenic unit of the Molecular Biotechnology Center
(University of Turin). Procedures were conducted in
conformity with national and international laws and
policies as approved by the Faculty Ethical Committee.
Embryos were dissected 13.5 days post coitum for MEF
derivation. Primary MEFs, 3T3 MEFs [44], MDA-
MB468 and SKBR3 cells (ATCC, Manassas VA, USA)
were grown in DMEM with GLUTAMAX (Dulbecco’s
modified Eagle medium; Gibco-BRL, Carlsbad CA,
USA), DU145 (ATCC) were grown in RPMI 1360
(Gibco-BRL). Both media were supplemented with 10%
(v/v) heat-inactivated FCS (fetal calf serum; Gibco-
BRL), 100 U/ml penicillin, 100 pg/ml streptomycin.
Treatments: S31-201 inhibitor [2], 100 uM (optimal dose)
or 50 uM (sub-optimal dose) in DMSO for 12 and 24
hours; Cobaltous chloride hexahydrate (Sigma Aldrich,
St. Louis MO, USA), 500 uM for 4 hours; Ly294002
PI3-K inhibitor, 40 uM for 48 hours.
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Proliferation rate and cell cycle analysis. For
proliferation rate, 1.5%10° cells were seeded in 6-well
plates and counted at the indicated times using the
Countess Automated Cell Culture (Invitrogen, Carlsbad
CA, USA).

For cell cycle analysis, sub-confluent cells were starved
24h hours, re-stimulated with 10% FCS, detached and
stained with propidium iodide solution (2.5 mg/ml PI
(Sigma Aldrich), 0.1 mg/ml RNaseA, 0.05% Triton X-
100) at the indicated times, followed by flow cytometry
analysis.

In vitro cell death, senescence and ROS production.
Cell death: cells were treated with Menadione (Sigma
Aldrich, 7.5 uM for 24 hours), H,O, (Sigma Aldrich, 1
mM for 16 hours), irradiated with 10 J/m*> UV-C or
serum-starved for 72 hours, followed by staining with
either with trypan blue, Annexin-V, anti-activated
Caspase-3 or by Tunel assay. Senescence: cells were
stained at the indicated times after plating using a
Senescence Cells Histochemical Staining Kit (Sigma
Aldrich), according to manufacturer’s protocol. ROS
measurement: equal numbers of cells were incubated
with 5 uM H,;DCFDA (Molecular Probes, Invitrogen)
for 30 min at room temperature and analyzed by flow
cytometry.

Microarray analysis. Micro array data are accessible

from the Gene Expression Omnibus
(http://www.ncbi.nih.gov/geo/) under accession
GSE21507.

Total RNA was prepared from sub-confluent MEF cells
derived from three independent embryos per genotype.
Samples were analyzed using the MouseWG-6 v 1.1
Expression BeadChip (Illumina, San Diego CA, USA)
as previously described [31]. Briefly, RNA was first
reverse transcribed using oligo (dT) primers to
synthesise first strand cDNA, followed by second strand
synthesis. ¢cDNA was then purified to remove salt,
RNA, enzymes, and excess primers. Subsequent in
vitro transcription synthesised biotin-labelled cRNA,
which was further purified and then hybridised to the
array chip.

Real Time-PCR. Total RNA was prepared with the
PureLink Micro-to-Midi total RNA Purification System
(Invitrogen). qRT-PCR reactions were performed as
previously described [44], using the Universal Probe
Library system (Roche Italia, Monza, Italy). The 18S
rRNA  pre-developed TagMan assay (Applied
Biosystems) was used as an internal control. For
primers and probes see Supplementary Information.

Lentiviral infection. pLKO vectors carrying either
scrambled or shRNA-HIF-lo. sequences (Open
Biosystems, Huntsville AL, USA) were packaged by
transfecting 293T cells and used to infect cells for 24
hours, followed by puromycin selection for 48 hours.

FACS Analysis. H;DCFDA and Annexin-V emission
were detected in the green channel (525 nm) and
propidium iodide in the red channel (575 nm) following
excitation by a 488 nm laser on a FACS Calibur
cytometer (Beckton, Dickinson and Company, Franklin
Lakes NJ, USA).

Western blot. Total, nuclear, mitochondrial and
cytosolic protein extracts, obtained as previously
described [45] were fractionated on SDS-PAGE and
transferred to a polyvinylidene difluoride membrane
(Millipore, Billerica MA, USA).

Glucose and lactate measurements. Glucose or lactate
were measured in cell supernatants 3 hours after
changing medium using a Glucose Assay Kit (Sigma
Aldrich) or a Lactate Colorimetric Assay Kit (Abcam).
Data were normalized to final cell counts. Glucose
intake was calculated as the difference in glucose
concentration between fresh medium and supernatant.

Glucose dependence. For glucose deprivation, cells
were cultivated in DMEM containing 0 g/l of glucose
and 3% FBS for 48 hours, then stained with Trypan
Blue (Invitrogen). For 2-deoxyglucose (2-DQG)
treatment, cells were treated with 1.5 mg/ml (MEFs) or
1 mg/ml (MDA-MB468) of 2-DG (Sigma Aldrich) for
48 hours, then stained with propidium iodide and/or
AnnexinV followed by flow cytometry analysis.

Calcium and ATP measurements. Cells were grown on
glass coverslips at 50% confluence. For Ca®’
measurements, cells were infected with the adenovirus
expressing the appropriate aequorin chimera as
previously described [46]. Measurements were carried
out in KRB (125 mM NaCl, 5 mM KCI, 1 mM MgSQ,,
I mM Na,HPO4, 5.5mM glucose, 20 mM NaHCOs;,
2mM Il-glutamine and 20mM HEPES pH 74,
supplemented with 1 mM CaCl,). Agonists and other
drugs were added to the same medium. Cells were lysed
with 100 uM digitonin in a hypotonic Ca*"-rich solution
(10 mM CaCl, in H;0O), thus discharging the remaining
aequorin pool. The light signal was collected and
calibrated into [Ca®'] values, as previously described
[46].

For measuring mitochondrial ATP, MEFs were
transfected with mitochondrial luciferase (mtLuc), and
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luminescence measured after 36 hours as previously
described [47]. Cells were constantly perfused with a
modified KRB containing 20 pM luciferin (Sigma
Aldrich).

Immunofluorescence. Cells plated on glass coverslips
were washed in PBS, fixed in 4% paraformaldehyde,
quenched with 50 mmol/L ammonium chloride,
permeabilized with 0.3% Triton X-100 in PBS,
saturated with 3% bovine serum albumin, and incubated
with primary antibodies at room temperature for 1 h,
followed by fluorescein-labeled secondary antibodies
(Sigma Aldrich) and then by Hoechst-dye. Tunel assay
(Roche Diagnostic Corp., Indianapolis IN, USA) was
performed according to manufacturer’s protocol. An
Axiovert 200M Zeiss microscope or the Axio-Observer-
71 Zeiss microscope with the ApoTome system for
optical sectioning were used. Images were acquired
with MetaMorph software (Molecular Devices,
Toronto, Canada) or the AxioVision release 4.6.3
software (Carl Zeiss, Inc., Oberkochen, Germany),
respectively.

PDH activity. 10° cells were plated on a 100%¥15 mm
dish and detached after 24 hours. PDH activity was
measured using the PDH mitoprofile kit (Invitrogen)
according to manufacturer’s protocol.

Immunoprecipitation. Freshly prepared pre-cleared
lysates were incubated O/N at 4°C with anti-HIF-1a
antibody and 20 pl of protein G-Sepharose beads (Ge
Healthcare Bio-Science, Uppsala, Sweden).
Immunoprecipitated proteins were boiled in 1x
Laemmli buffer for 5 min.

Mitochondrial membrane potential (mtA¥). Cells
grown in 24-well plates were incubated with 10 uM JC1
(5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-enzimidazolyl-
carbocyanine iodide) in PBS containing 5 mM glucose
for 10 min at 37°C followed by fluorescence recording
in a microplate reader (Infinite M200, Tecan, Austria) at
485 nm excitation/520 nm emission and 535 nm
excitation/635 nm emission wavelengths.

Respiratory chain activity. MEFs grown in 24-well
plates were washed with PBS, PBS containing 5 mM
glucose and 6 pM resazurine was added and
fluorescence was recorded immediately in a microplate
reader (Infinite M200, Tecan, Austria) at 510 nm
excitation and 595 nm emission wavelengths. For
control of the threshold activity, cells were preincubated
for 15 min with 2 uM KCN in complete medium and
measurements were performed as described above but
in PBS containing 2 uM KCN. The activity values were
normalized to mg of protein.

ATP/ADP ratio. ADP and ATP levels were measured
using an ADP/ATP ratio kit (Abcam).

Sub-cellular fractionation. Sub-cellular fractionation
was performed essentially as described [48,49]. Briefly,
cells (10°) were harvested, washed in PBS, pelleted,
resuspended in homogenization buffer (0.25 M sucrose
and 10 mM Hepes pH 7.4) and gently disrupted by
dounce homogenization. Upon gentle centrifugation to
remove cellular debris and nuclei, the supernatant was
centrifuged at 10.300 x g for 10 min to pellet crude
mitochondria, which were resuspended in isolation
medium (250 mM mannitol, 5 mM Hepes pH 7.4, 0.5
mM EGTA).

Microscopic analysis of mitochondrial _structure.
Mitochondrial structure was studied after loading 10nM
of Tetramethyl rhodamine methyl ester (TMRM).
Images were recorded using a digital imaging system
based on a Zeiss Axiovert 200 fluorescence microscope
equipped with a back-illuminated CCD camera (Roper
Scientific, USA), excitation and emission filter wheels
(Sutter Instrument Company, USA) and piezoelectric
motoring of the z stage (Physik Instrumente, GmbH &
Co., Germany). The data were acquired and processed
using the MetaFluor analyzing program
(Universal Imaging Corporation, USA).

Small animal PET. PET images were acquired on the
positron emission tomograph for small animals YAP-
(S)PET system [50]. Mice were fasted overnight before
PET acquisition, anesthetized by inhalation of 2% of
isofluorane and intravenously injected with 350uCi+50
of [ISF]ﬂuorodeoxyglucose ([ISF]FDG) in a 0.15-ml
volume. The residual dose in the syringe was measured
to verify the effective injected dose. The tumour was
centred on the field of view of the tomograph and a
static acquisition started after 45 minutes of uptake. A
3D data acquisition mode and an expectation
maximization (EM) algorithm with 30 iterations for
image reconstruction were used, the resulting voxel size

was 0.5%0.5x2mm3. No corrections were made for
attenuation and scatter. The images were visualized
with dedicated software in the three planes (transaxial,
sagittal, and coronal). Quantitative image analysis of
tracer uptake was evaluated by drawing region of
interest (ROI) of tumour on the transaxial images.
E)FDG uptake was quantified as standardized uptake
values (SUV) and as percentage of the injected dose per
gram of tissue (%ID/g).

Statistical analysis. An unpaired ¢ test was used to
calculate a P value for two groups, while a P value on a
response affected by two factors was calculated with a
two-way ANOVA [51].
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SUPPLEMENTARY FIGURES
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Supplementary Figure S1. Phenotype of the Stat3”"~ MEFs. (A) Stat3”C MEFs show an accelerated cell cycle. Cells were
starved for 24 hours, stimulated with serum and analyzed after the indicated times. The percentage (mean + s.e.m.) of cells in
S-phase was calculated by flow cytometry after staining with propidium iodide and represent three independent samples per
genotype. (B,C) Stat3“C MEFs are protected from apoptosis upon serum starvation. Cells plated on coated glass slides were
subjected to serum-starvation for 72 hours and then stained with a TUNEL assay (B) or with an antibody against activated
caspase-3 (C). (B) Arrows indicate TUNEL-positive cells. Nuclei are shown in blue. Numbers represent the mean percentage of
positive cells + s.e.m. of three independent samples per genotype. (C) Numbers represent the percentage (mean + s.e.m.) of
positive cells from three independent samples per genotype. *, p < 0.01. (D) Menadione-induced apoptosis. Cells were
treated with 7,5 uM Menadione for 24 hours. (E) UV-induced apoptosis. Cells were treated with UV light (10 j/mz) and stained
for Annexin V after 24 hours. (D,E) Data represent the percentage of Annexin V positive cells (mean + s.e.m.) of three
independent samples per genotype. *, p < 0.01. Empty bars or filled bars, stat3""" or Stat3%° MEFs.
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Supplementary Figure S2. Decreased expression of mRNAs encoding for mitochondrial proteins in Stat3%C MEFs. (A) List of
mRNAs annotated as ‘mitochondrion’” whose expression was significantly lower in Stat3C MEFs in the microarray experiment
of Figure 2. (B) Tagman RT-PCR on nuclear-encoded mitochondrial genes. Empty bars or filled bars, stat3""" or stat3”¢
MEFs respectively, either silenced or not for HIF-1a. (sh-HIF-1a), represent mean values + s.e.m. of three independent
experiments. *, p < 0,01. ATP-5L, ATP synthase, H+ transporting, mitochondrial FO complex, subunit G; FH, fumarate
hydratase; MRPL39, 39S ribosomal protein L39, mitochondrial.
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Supplementary Figure S4. Stat3-dependent glycolytic metabolism and mitochondrial activity in tumour cell lines. (A) The
STAT3-dependent MDA-MB468, SKBR3, DU145 and the STAT3-independent T47D human tumour cells were either treated or
not with the S31 STAT3 inhibitor for 12 hours followed by the analysis of total and Y705 phosphorylated STAT3 by Western-
blot. (B) Percentage of Annexin V' MDA-MB468 cells treated with the S3I compound for the indicated times. (C-E) Gene
expression, lactate production and mitochondrial Ca”" release were measured in the SKBR3 (C), DU145 (D) and T47D (E) cell

lines as described in the legends to figures 3 and 4. *, p<0,01 (n=3).
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SUPPLEMENTARY MATERIALS AND
METHODS

Primer sequences and probes used for Tagman PCR:
mmu HIF-1a upper, 5’-gcactagacaaagttcacctgaga-3’
mmu HIF-1a lower, 5’-cgctatccacatcaaagcaa-3’, Probe:
#95

mmu PDK-1 upper, 5’-gttgaaacgtcccgtgct-3’

mmu PDK-1 lower, 5’-gcgtgatatgggcaatcc-3°, Probe:
#20

mmu GLUT-1 upper, 5’-atggatcccagcagcaag-3’

mmu GLUT-1 lower, 5’-ccagtgttatagccgaactge-3°,
Probe: #52

mmu PFK-L upper, 5’-ccatggacgaggagaggtt-3°

mmu PFK-L lower, 5’-tccagttgttctcaaagctcct-3°, Probe:
#42

mmu ENO-1 upper, 5’-gaggcgcttagtgctgcet-3°

mmu ENO-1 lower, 5’-agaatagacatggcgaatttctg-3’,
Probe: #91

mmu OSM-R upper, 5’- ccaaaaagagttcagcacacc -3’
mmu OSM-R lower, 5°- ccgaccacacttgtctccat -3°, Probe:
#32

mmu PDGFRa upper, 5’-gtcgttgacctgcagtgga-3’

mmu PDGFRa lower, 5’-ccagcatggtgatacctttgt-3’,
Probe: #80

mmu SOCS-3 upper, 5’-atttcgcttcgggactage-3°

mmu SOCS-3 lower, 5’-aacttgctgtgggtgaccat-3°, Probe:
#83

mmu ATP-5L upper, 5’-aaggaagctgtgctgaatgg-3°

mmu ATP-5L lower, 5’-atgccacgtttgcctatga-3°, Probe:
#42

mmu FH-1 upper, 5’-gcaccccaatgatcatgtta-3’

mmu FH-1 lower, 5’-cattgctgtgggaaaggtg -3°, Probe:
#106

mmu NDUFB4 upper, 5’-agggtggtgaagtggaagag-3’
mmu NDUFB4 lower, 5’-tggccacttccactggtta-3°, Probe:
#31

mmu NDUFAG6 upper, 5’-cccactcccaagaactcact-3°

mmu NDUFA6 lower, 5’-tggataagtctttcctttctgtcee-3°,
Probe: #17

hsa HIF-1a upper, 5’-ggttcactttttcaagcagtagg-3’

hsa HIF-1a lower, 5’-tggtaatccactttcatccattg-3°, Probe:
#3

hsa PDK-1 upper, 5’-gctgggtaatgaggatttgact-3’

hsa PDK-1 lower, 5’-aagtctgtcaattttcctcaaagg-3’, Probe:
#10

hsa ENO-1 upper, 5’-gctccgggacaatgataaga-3’

hsa ENO-1 lower, 5’-tgatgtgctcaacagccttt-3’, Probe:
#60

Antibodies. Rabbit polyclonal against p-Stat3, p-Akt
and Caspase-3 (Cell Signaling Technology, Danvers
MA, USA), Stat3 and Actin (Santa Cruz Biotechnology,

Santa Cruz CA, USA), Vdac-1 (Abcam, Cambridge,
UK). Mouse monoclonal against Hif-laa (Novus
Biologicals, Littleton CO, USA), Sod2 (Abcam) and [3-
Tubulin (Santa Cruz Biotechnology). Mouse
monoclonal against Akt was generated in house by
immunization with a MBP-Akt fusion protein and
purified against the recombinant protein. The
MitoProfile total OXPHOS rodent WB Antibody
Cocktail (Mitosciences, Eugene OR, USA) was used for
mitochondrial complexes.

In vivo model. 8 Female mice 5 to 7 weeks of age were
s.c. implanted in CD-1 mice (Charles River
Laboratories, Inc.) with MDA-MB468. Cells were
harvested using trypsin and washed with PBS. 10 Cells
were resuspended in 200 puLL PBS and injected s.c. into
the left flank of mice. 14 days after the inoculation of
tumour cells, mice were randomly divided in two
groups and the first PET acquisition was performed.
Subsequently the first group (n=5) received in the tail
vein a 5 mg/kg of S3I three time per week for 2
consecutive weeks; the second group (n=3) was not
treated. All mice were monitored two times weekly for
body weight and tumour measurement.
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