www.impactaging.com

AGING, January 2011, Vol. 3. No 1

Commentary

The role of glyoxalases for sugar stress and aging, with relevance for
dyskinesia, anxiety, dementia and Parkinson’s disease

Georg Auburger and Alexander Kurz

Exp. Neurology, Department of Neurology, Goethe University Medical School, 60590 Frankfurt am Main,

Germany

Commentary on: Scheckhuber CQ et al. Modulation of the glyoxalase system in the aging model Podospora anserina: effects

on growth and lifespan. Aging. 2010; 2: 969-980.
Received: 1/12/11; Accepted: 1/15/11; Published: 1/16/11
Corresponding to: auburger@em.uni-frankfurt.de

© Auburger and Kurz . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Carbohydrates are the primordial source of energy and
carbon for certain unicellular organisms as well as for
the complex mammalian brain and its synaptic
functions [1]. However, for all these cells the
degradation of carbohydrates poses several problems,
e.g. the formation of toxic by-products such as the
glycating electrophile methylglyoxal (MG, also named
2-oxo-propanal) or the excessive generation of lactic
acid with ensuing pH change [2]. Under conditions of
high carbon flux and under limited availability of
NAD+, e.g. during anaerobic glycolysis [3], the triose
phosphates dihydroxyacetone phosphate and
glyceraldehyde-3-phosphate spontaneously decompose
to MG, a compound known to contribute to the
generation of advanced glycation endproducts (AGEs)
[4] - with possibly irreversible damage to lipids, nucleic
acids and proteins, in particular of mitochondria [5] -
and to the induction of ubiquitin conjugates [6]. In a
pathway with very high conservation during evolution,
all these «cells use the enzyme glyoxalase I
(lactoylglutathione lyase) in the presence of glutathione
(GSH) to convert MG into S-lactoyl-glutathione (SLG)
and then use glyoxalase II (hydroxyacylglutathione
hydrolase) to liberate D-lactate and glutathione. In spite
of this toxicity of MG, some bacteria use the enzyme
methylglyoxal synthase to generate MG, apparently to
regulate carbon flux and growth rate [7]. Furthermore,
the ratio between GSH and SLG in such bacteria
modulates  potassium  efflux and intracellular
acidification [8]. Acting as a signal initiator, MG
activates the osmosensor SInl, the HOG-MAP kinase
cascade and the calcium(2+) signalling pathway in yeast
[9]. In human cells, MG has a well established anti-

proliferative effect in cancerous cells with enhanced
glycolysis (Warburg-effect) [10, 11]. MG was recently
reported to play a physiological role in the modulation
of hypoxia-induced-factor-1a. (HIF-1alpha) levels and
thus in the modulation of the balance between anaerobic
and aerobic bioenergetics [12]. Interestingly, an
anxiety-suppressing effect of MG infusions into the
brain was observed in mice [13]. And in patients with
hereditary  dyskinesias, episodic  disorders  of
spontaneous movement, it is now known that either
defects in the cerebral glucose transport or defects in the
putative neuronal SLG sensor protein MR-1 can be
responsible for these symptoms [14, 15]. These
observations suggest that MG and SLG are not simply
toxic by-products to be eliminated, but might play an
important physiological function in bioenergetic
signaling.

In view of the importance of bioenergetics, sugar
stress and growth pathways for the molecular
mechanisms of aging, it is hardly surprising that
mutations in the glyoxalase pathway affect the survival
under carbonyl stress and adverse growth conditions.
A stress-protection effect of glyoxalase I overe-
xpression or a sensitizing effect of glyoxalase I
deficiency was alredy documented in the bacteria
Escherichia coli under anaerobic conditions with high
carbon flux [16], the protozoan parasite Leishmania
donovani [17], in the yeast Saccharomyces cerevisiae
[18], in the plant Nicotiana tabacum [19, 20], in the
worm Caenorhabditis elegans [21] and in Rattus
norvegicus and Homo sapiens under diabetic sugar
stress [22, 23].
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The attention of investigators was focused on
glyoxalase I, since this enzyme catalyzes the rate-
limiting step in the pathway. Furthermore, glyoxalase I
is regulated in its expression on the transcript level.
Elevated mRNA / protein levels or increased enzyme
activity were found to mediate the survival of dental
caries bacteria Streptococcus mutans and their
continued maintenance of glycolysis in media with
high sugar and acid concentrations [24, 25], of
Bacillus anthracis, of the fungus Candida albicans and
of the worm Onchocerca volvulus under oxidative
stress [26-28], of Arabidopsis thaliana under abiotic
stress [29], of the high-dormancy seeds of the grass
Lolium rigidum Gaud [30], of rice Oryza sativa roots
under chilling temperatures or leaves under UV
radiation [31, 32], of the tomato Solanum
pimpinellifolium as well as the mustard Brassica
juncea under salt and heavy metal stress [33, 34] and
of mammalian cancer cells under stress [35]. However,
it is has remained wunclear whether increased
glyoxalase I levels only serve to protect normal growth
and survival under adverse conditions, or whether they
are able to postpone aging and increase health at
advanced age, as a means to longevity.

Therefore, the recent publication in AGING from
investigators around H. Osiewacz in Frankfurt [36] is
therefore very important, assessing the relevance of the
glyoxalase pathway for growth and lifespan in a model
organism that has been very well characterized for more
than 50 years within the field of healthy aging organism
research, namely the fungus Podospora anserina [37].
This filamentous ascomycete thrives under aerobic
conditions and on extracellular glucose, completing a
life cycle of germination, maturity with maximal
growth, senescence with pigmentation and apical cell
death within three weeks. Here, the principal finding of
the authors was the extension of the healthy lifespan by
4.3% through the combined overexpression of
glyoxalase I + II under conditions of sugar stress (2%
glucose), while no lifespan differences were apparent
for normal sugar concentrations. No growth differences
were apparent under any conditions tested. Importantly
and unexpectedly, this study found a reduction of
lifespan through strong overexpression of glyoxalase I
alone, in contrast to a report of enhanced lifespan after
mild glyoxalase I overexpression in C. elegans [21],
suggesting that overly strong glyoxalase activity may be
toxic due to glutathione depletion with subsequent
oxidative stress and possibly potassium efflux. Together
with three crucial previous publications from the same
team [38-42], these data indicate that a prolongation of
healthspan is possible through a network of factors

controlling aerobic and anaerobic bioenergetics.

Indeed, these data are of paramount importance for the
needs of our modern civilization characterized by
excess sugar consumption and an ever older population.
They are also a sound scientific basis for future
molecular understanding of human aging, where the
glyoxalase system has been implicated in senescence
and in several age-related disorders. In man, where the
promoter of gloxalase I is inducible by insulin and
heavy metals [43], the transcript levels of glyoxalase I
show a continuous decrease after the start of senescence
at 55 years of age, similar to the decrease of glyoxalase
I levels in old rat muscle tissue [44, 45]. As a biomarker
of anxiety, altered expression levels of glyoxalase I
were reported in mice, compatible with the hypothesis
that low MG levels correlate with anxiety, and an
anxiolytic effect of MG infusions into brain was
demonstrated [13, 46-49]. Glyoxalase I anomalies were
also reported in psychiatric diseases such as mood
disorder, schizophrenia and autism, where anxiety
symptoms are altered [50-52]. As a biomarker of tau
protein pathology in Alzheimer’s disease and
frontotemporal dementia, increased expression of
glyoxalase I was reported in mouse models and patients,
and tau aggregation was observed as an effect of
elevated MG levels [53-55]. With tau and alpha-
synuclein being the two most important genetic risk
factors of Parkinson’s disease (PD) [56] and in view of
the co-precipitation of these two proteins in the
pathognomonic cytoplasmic “Lewy body” inclusions
[57, 58], it is interesting that we found an upregulation
of glyoxalase I to be the prominent response within the
mouse brain transcriptome to a deficient alpha-
synuclein function [59]. Whether a gain-of-function of
alpha-synuclein and other Parkinson triggering events
also modulate the glyoxalase system, remains an issue
we are investigating, and this seems credible in view of
a report on altered glyoxalase I expression in mouse
brains with Parkin deficiency [60]. Furthermore, an
unexplained glutathione depletion and the presence of
AGEs in brain autopsies with incidental Lewy bodies
[61, 62] suggests an involvement of this pathway in the
earliest stages of PD pathogenesis.

Since pharmacological tools are available to selectively
antagonize glyoxalase I function [10, 11, 63] and to
relieve carbonyl stress [64-67], it is now very promising
to have the mutants generated in this publication of
AGING [36] as a fast and well-characterized micro-
organism model of age-related neurodegenerative
disease, and to use them to understand and postpone this
pathological process.
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