www.lm pactaging.com AGING, December 2010, Vol. 2. No 12

Research Perspective

Zfra is a small wizard in the mitochondrial apoptosis
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Abstract: Zfra (zinc finger-like protein that regulates apoptosis) is a naturally occurring short peptide consisting of 31
amino acids, which regulates tumor necrosis factor (TNF)-mediated cell death by interacting with receptor adaptor protein
TRADD (TNF receptorassociated death domain protein) and downstream JNK (c-Jun N-terminal kinase), NF-kB (Nuclear
factor kappa B) and WWOX/WOX1 (WW domain-containing oxidoreductase). Cytochrome c release is generally considered
as a pivotal step in apoptosis. Remarkably, overexpressed Zfra induces apoptosis via the mitochondrial pathway, which
involves suppression of Bcl-2 and Bcl-xL expression (without causing cytochrome c release), counteracting the apoptotic
function of tumor suppressor p53 and WWOX, and dissipation of mitochondrial membrane potential for ultimately leading
to cell death. Control of cellular aging and apoptosis by Zfra, p53 and WWOX is discussed.

Potential role of tumor suppressors p53 and
WWOX/WOXT1 in aging

In year 2000, we and two other groups have
independently discovered a candidate tumor suppressor,
named WW domain-containing oxidoreductase (design-
nated WWOX, FOR, or WOX1) [1-7; reviews]. Human
WWOX gene is mapped to a common fragile site on
chromosome ch16q23.3-24.1. Alteration of human
WWOX gene has been found in breast, prostate and
many types of cancers. WWOX/WOXI1 possesses func-
tional domains, including a nuclear localization seq-
uence (NLS), two N-terminal WW domains (containing
conserved tryptophan residues) and a C-terminal short-
chain alcohol dehydrogenase/reductase (SDR) domain.
The WW domain participates in molecular interactions,
signaling and apoptosis [1-7]. Whether SDR domain
has an oxidoreductase activity remains to be
established. There is a mitochondria-targeting segment
in the SDR domain, which allows relocation of
WWOX/WOXI1 to the mitochondria [1-3,8]. Also, sex
steroid hormones estrogen and androgen may interact
with an N-S-Y-Kmotif in the SDR domain that all-
ows relocation of WWOX/WOXI to the nucleus [3,7].

Over the past 10 years of global research efforts, a big
picture regarding the functional roles of WWOX/
WOX1 has been emerging. Areas of interests are
the critical involvement of WWOX/WOX1 in 1)
apoptotic and stress responses in vivo and in vitro [1-
3,7], 2) regulation of embryonic and tumor devel-
opment and postnatal survival in vivo [6,7], 3)
signaling and regula-tion of gene transcription [1-3,7],
4) normal physiology and metabolism [9-13], and 4)
neural development, damage and degeneration (e.g.
Alzheimer’s disease) in vivo [14-19].

WWOX/WOX1 is known to increase the cyto-
toxic function of tumor necrosis factor (TNF)
in killing cancer cells [1-3,7,8]. Ectopically expres-
sed SDR domain is shown to increase TNF
cytotoxicity by significant suppression of the
expression of apoptosis inhibitors Bcl-2 and Bcel-xL
by >85%, but increase in the expression of
pro-apoptotic p53 by ~200% [8]. Accordingly,
transiently overexpressed SDR domain induces
apoptosis. Overexpressed WW domains also induce
apoptosis of cancer cells via a different mech-
anism, in which caspase activation was not shown [8].

www.impactaging.com

1023 AGING, December 2010, Vol.2 No.12



Tumor suppressor p53 is known to play a crucial role
in aging [20-22]. WWOX/WOX1 and p53 are partners
in signaling and apoptosis [1-3,7,8]. Participation of
WWOX/WOX1 in p53-regulated cellular aging is
likely. In response to stress stimulation, WWOX/
WOXI1 becomes phosphorylated at tyrosine 33 and
relocates to the mitochondria and nuclei to induce
apoptosis both in vivo and in vitro [1-3,8,14-18]. p53
also relocates to the mitochondria under apoptotic
stress [23,24]. p53 relays many routes of signal
pathways [25], and WWOX/WOX1 physically inter-
acts with p53 and increases its stability in vivo [26].
That is, in the absence of WWOX/WOXI, p53
becomes susceptible to ubiquitin/proteasome-mediated
degradation. Activated WWOX/WOX1 with phos-
phorylation at Tyr33 binds activated p53 with Ser46
phosphorylation [26]. Cumulative evidence shows that
both activated WWOX/WOX1 and p53 act in a syn-
ergistic manner in promoting apoptosis [1,2,7,8,15-
18,26], suggesting that p53 and WWOX/WOX1 are
partners in orchestrating aging probably via the
mitochondrial pathway.

Zfra participates in the TNF signaling

To identify the possible presence of a common
inhibitor of WWOX/WOX1 and p53, we carried out
yeast two-hybrid cDNA library screen and identified a
31-amino-acid WOXI1- binding protein, named Zfra
(zinc finger-like protein that regulates apoptosis) [27].
The amino acid sequence of Zfra is “MSSRRSSSCK
YCEQDFRAHT QKNAATPFLA N”. Structurally,
Zfra is homologous to the family of C2H2 type zinc
finger proteins. Zfra may be considered as the smallest
member of the zinc finer protein family. Zfra poss-
esses 2 cysteines, suggesting that it may undergo self-
polymerization in vivo. Serine 8 (Ser8) is a conserved
phosphorylation site. Overly expressed Zfra induces
apoptosis in many types of cancer cells, whereas
alteration of Ser8 abolishes its apoptotic function [28].
The induced apoptosis involves appearance of flip-
flopped phosphatidylserine on the cell surface, nuclear
condensation and internucleosomal DNA fragment-
ation [27-29].

The abundance of Zfra is very low; however, it is
inducible under stress conditions (e.g. UV irradiation).
Majority of the zinc finger proteins are capable of
interacting with DNA and RNA to control gene tran-
scription especially during embryogenesis, suggesting
that Zfra may possess gene regulatory functions by
binding with DNA and RNA.

Due to its small in size, Zfra physically interacts with

many proteins in the TNF signaling [27,28]. Also, it
binds distinct sites at different domains in a single
protein [28]. For example, Zfra binds to the N-terminal
first WW domain and the C-terminal SDR domain of
WOXI1. Upregulation of TNF and inflammatory cyto-
kines is shown during normal or pathogenic aging
processes [30]. Depending upon the extent of express-
ion, Zfra either enhances or blocks the cytotoxic
function of TNF [27,28]. TNF instigates both cell
survival and apoptosis pathways. In the TNF signaling,
TNF binds cognate membrane receptors (TNF receptor
type 1 and II) for recruiting death domain proteins
TRADD, FADD and RIP to form a death inducing
signaling complex (DISC) [31,32]. Caspase 8 is then
bound to the DISC and becomes activated for
executing apoptosis at both the mitochondrial and
nuclear levels. Supporting evidence shows that poly-
ubiquitin coating of RIP and death domain proteins is
needed to block the apoptosis cascade and simul-
taneous initiate the NF-kB survival pathway [31-34].

We determined that TNF increases the expression of
Zfra and enhances its binding with TRADD at the
plasma membrane [27,28]. We suspect that upon
induction by TNF or Fas ligand, the overexpressed
Zfra, together with TRADD and FADD, overrides the
protective effect of polyubiquitinated RIP and thereby
induces apoptosis. This likely scenario remains to be
established.

Zfra is a negative regulator of WOXI1, p53 and
JNK1

Zfra binds downstream proteins in the TNF signaling.
TNF induces the binding of Zfra with activated
WOX1, JNKI1, and NF-xB [27,28]. Zfra binds to the
N-terminal first WW domain and the C-terminal SDR
domain of WOX1. Without phosphorylation of Tyr33
in the first WW domain, Zfra could not interact with
WOX1 [28], suggesting that phospho- Tyr33 provides
an accessible structural motif or site for Zfra binding.
This binding blocks the apoptotic function of WOXI1.
By the same token, Zfra interacts with activated p53
with phosphorylation at Ser46 and inhibits the p53-
mediated growth suppression and apoptosis [28].
Ser46 phosphorylation in p53 appears to be critical for
its apoptotic function [26,35,36]. Zfra also binds JNK1
and restricts its activity [28]. It appears that transiently
overexpressed Zfra sequesters WOX1, NF-xB, p53,
JNK1 and ERK in the cytoplasm, thereby blocking
their transcriptional function and others. The first WW
domain of WOXI1 alone is sufficient to drive the
transcriptional activation of the NF-kBresponsive
element [18]. Sequestered WOXI1 in the cytoplasm is
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likely to lose its function in regulating promoter
activation.

A role of Zfra in the nucleus

Many C2H2 zinc fingers proteins are involved in the
regulation of gene transcription, growth suppression,
and/or apoptosis [37-39]. Nuclear localization of these
proteins is essential for their functions. Supporting data
shows that Zfra targets both nuclei and mitochondria for
controlling cell growth and apoptosis [27,28]. For
example, UV irradiation upregulates the expression of
Zfra, and the protein becomes phosphorylated at Ser§
and then relocates to the nucleus [28,29] (Route 1;
Figure 1). That is, phospho-Zfra is found accumulated
in the nucleus. Ser8 phosphorylated-Zfra is essential in
inducing apoptosis probably starting at the nuclear
level. Without Ser8 phosphorylation, no apoptosis
occurs [27-29].

The specific threonine/serine  kinase(s), which
phosphorylates Zfra, is unknown and remains to be
identified. A likely candidate for phosphorylating Zfra
is JNK1. JNK1 plays a central role in the MAPK
signaling, and it integrates many routes of signaling
pathways [40]. TNF and UV light, for instance, causes
JNK1 activation and induces the complex formation of
Zfra and JNKI1. Whether activated JNK1 phosphor-
ylates Zfra remains to be determined. Alternatively,
Zfra may be able to stabilize and induce constitutive
JNKI1 activation, or cause rapid JNKI1 turnover.

Interestingly, phospho-Zfra undergoes rapid de-
phosphorylation and degradation, suggesting that Zfra
may affect the functional activation and turnover of its
binding proteins. During UV irradiation, Zfra is shown
to physically interact with activated p53 and WOXI.
That is, UV induces the de novo formation of the Zfra-
p53-WOX1 complex for relocating to the nuclei.
Whether the endogenous Zfra blocks the apoptotic
function of p53 and WOX1 remains to be determined.

Zfra executes mitochondrial apoptosis on its own
manner

Zfra exhibits a unique function in modulating
mitochondrial apoptosis. When cells are exposed to
inducers of mitochondrial pathway of apoptosis (e.g.
staurosporine or betulinic acid), Zfra becomes
phosphorylated at Ser8 and relocates to the mito-
chondria [29]. Alteration of Ser8 to Gly8 abolishes Zfra
relocation to the mitochondria. At the mitochondrial
level, Zfra downregulates the expression of apoptosis
inhibitor Bcl-2 and Bcl-xL (Route 2, Figure 1). Notably,
this effect does not result in cytochrome c release. In the

meantime, Zfra causes dissipation of mitochondrial
membrane permeability, thereby leading to eventual
chromosomal DNA fragmentation and cell death.

Both Bcl-2 and Bcl-xL are potent inhibitors of the
mitochondrial apoptosis [41-44]. They prevent the loss
of mitochondrial membrane potential and suppress
cytochrome ¢ release. Of particular note is that Zfra
suppresses the expression of Bcl-2 and Bcl-xL, but fails
to cause cytochrome c release, which is very unusual
and intriguing. Cytochrome c¢ release from the
mitochondria is a hallmark event in apoptosis. A likely
scenario is that Zfra directly binds cytochrome ¢ and
blocks its release from the mitochondria (Route 3,
Figure 1).

Suppression of Bcl-2 and Bcel-xL expression by Zfra
may be due to its ability in interacting with DNA and
RNA for regulating gene transcription during cell
growth and death, just like the functions of many zinc
finger proteins [37-39]. Indeed, by “mRNA immuno-
precipitation” using specific Zfra antibodies, Zfra binds
quite a few mRNA molecules. How Zfra modifies the
translation of mRNA to protein requires further
investigation.

Normally, release of proapoptotic proteins (e.g.
cytochrome ¢ and Smac/DIABLO) in the intermem-
brane space of mitochondria requires leakage of outer
mitochondrial membrane. Bcl-2 and Bcel-xL provide a
homeostatic control against the pore forming activity of
Bax and Bak [41-45]. Under certain circumstance,
cytochrome c release is not essential for leading to
apoptosis such as in Fas-induced caspase activation and
apoptosis [46]. Apoptosis may occur in the absence of
cytochrome c¢ release from the mitochondria and
accumulation in the cytosol [47]. In addition, dis-
sipation of mitochondrial membrane potential is not
essential for DNA fragmentation [48].

Zfra induces mitochondrial membrane potential
dissipation

Although Zfra may block cytochrome c¢ release,
overexpressed Zfra causes mitochondrial membrane
potential (MMP) dissipation [29]. Alteration of lipids
and cytosolic proteins on the gating properties of
voltage-dependent anion channel (VDAC) may play an

important role in permeabilization of mitochondrial
outer membrane at the early stage of apoptosis [43].
Also, activated tBid and Bax increase the pore size of
mitochondrial VDAC for cytochrome c release. This
effect may be blocked by cyclic AMP-dependent
protein kinase A (PKA) in the presence of ATP.
Blocking of cytochrome c release by Zfra may be due to
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ZFRA IN THE MITOCHONDRIAL PATHWAY OF APOPTOSIS

Induction of mitochondrial
pathway of apoptosis
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Figure 1. Zfra in the mitochondrial pathway of apoptosis. UV light induces Zfra phosphorylation (pZfra) at Ser8 and
translocation to the nuclei (Route 1). Zfra rapidly undergoes de-phosphorylation and degradation in the nuclei [29]. However, in response
to stimuli for the mitochondrial pathway of apoptosis, Zfra becomes Ser8-phosphorylated and relocates, along with p53 and WOX1, to
the mitochondria. Ectopic Zfra significantly downregulates Bcl-2 and Bel-xL (Route 2), blocks cytochrome ¢ release by interacting with
voltage-dependent anion channel (VDAC) (Route 3), and yet induces dissipation of mitochondrial membrane potential [29].
Alternatively, Zfra probably interacts with cytochrome c to block its release from the mitochondria. Zfra binds and blocks the apoptotic
function of WOX1 (Route 4). Overexpressed WOX1 induces cytochrome c release (Route 5) [29]. By the same token, Zfra blocks

apoptotic function of p53 in the mitochondria.

its interaction with VDAC (Route 3, Figure 1).

Zfra controls p53- and WOX1-regulated mitochon-
drial apoptosis

Numerous proteins are shown to relocate to the
mitochondria during apoptosis. WOXI1, p53 and Zfra
are known molecules, which participate in apoptosis via
the mitochondrial pathway. Whether relocation of
WOX1, p53 and Zfra occurs as a tri-molecular complex
is not known. Nonetheless, there is a close functional
relationship among these proteins. For example,
Zfra blocks WOX1-induced cytochrome ¢ release [29]

(Routes 4 and 5, Figure 1). Tyr33-phosphorylated or
activated WOX1 binds to the proline-rich region and
phospho-Ser46 of p53, and both proteins induce
apoptosis synergistically [8,26]. Knockdown or func-
tional suppression of WOX1 by antisense mRNA, small
interfering RNA, or dominant negative leads to
decreased stability of p53 and apoptotic function [26].
Overexpressed Zfra sequesters WOX1 and p53 in the
cytoplasm. Interestingly, introduction of Ser8-mutated
or inactivated Zfra in cells spontaneously induces
translocation of WOX1 and p53 to the mitochondria,
suggesting that Ser8 is crucial for Zfra in control-
ling relocation of WOX1 and p53 to the mitochondria.
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Role of Zfra in aging and neurodegeneration:
Perspective

WOX1 is significantly downregulated in the hippo-
campi of patients with Alzheimer’s disease [14]. In
vitro analysis reveals that downregulation of WOX1
leads to tau hyperphosphorylation in neuroblastoma
cells, which positively correlates with the increased tau
hyperphosphorylation in vivo [14]. It appears that in
addition to tau, many proteins may undergo aggregation
in the absence of WOXI1 in vitro. Whether this occurs
with Zfra is unknown. Zfra possesses 2 cysteines, and
this allows Zfra to readily undergo polymerization.
Binding of Zfra with WOX1 would prevent Zfra self-
polymerization. Conceivably, Zfra is likely to play a
role in neurodegeneration.

Zinc finger proteins directly or indirectly affect cellular
aging. For example, as a p53 target gene, Wig-1
encodes a zinc finger protein for binding to double-
stranded RNA and enhancing p53 mRNA stability via
interacting with the 3'UTR in a positive feedback loop
[49]. Defective in zinc finger protein in controlling
cellular DNA repair processes may link to several
human neurological disorders, such as ataxia with
oculomotor apraxia 1 and spinocerebellar ataxia with
axonal neuropathy 1 [50]. Additionally, zinc finger
mproteins participate in degenerative skeletal disorders
in an increasingly aging population [51] and cognitive
impairment [52]. The functional role of Zfra in
controlling aging processes is of interest for
investigation.

In summary, Zfra is a 31-amino-acid zinc finger-like
protein. Zfra regulates cell death in the pathway of
tumor necrosis factor (TNF) by physically interacting
with receptorassociated adaptor TRADD and down-
stream NF-kB, JNKI1, and WOXI1 [28]. Remarkably,
transiently overexpressed Zfra inhibits Bcl-2/Bcl-xL
expression without causing cytochrome c release from
the mitochondria, and induces loss of mitochondrial
membrane permeability for leading to apoptosis [29].
While the underlying mechanism is largely unknown,
Zfra may undergo self-association in response to stress
stimuli and suppresses the function of NF-kB, WOX1,
p53 and ERK. These observations suggest a role of Zfra
in regulating cell cycle progression and cellular
senescence.
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