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Intriguingly, in this issue of Aging, Anisimov et al.

reported that lifelong treatment with metformin (an anti-
diabetic drug with potentially anti-aging effects) was
beneficial for female mice but shortened lifespan in
males. Here I discuss why suppression of aging may be
unfavorable in young males.

Metformin is used for treatment of type II (adult-onset)
diabetes. Also, metformin and its analog phenformin
prevent cancer and increase lifespan in rodents [1-7].
Yet, effects of metformin depend on mice strains and
gender. In one strain (transgenic female HER-2/neu
mice), metformin slowed down aging and tumor devel-
opment [3]. In another strain (female SHR mice), met-
formin slowed down aging without inhibiting spont-
aneous tumorigenesis [4]. In third strain (female 129/Sv
mice), metformin decreased carcinogenesis but only
marginally increased life span [8]. Unexpectedly, in
male mice of the same 129/Sv strain, metformin decr-
eased the mean life span by 13% [8]. How can this be
explained? There are 3 additional pieces to the puzzle.
First, metformin via several mechanisms inhibits the
mTOR pathway [9-15]. Second, inhibition of mTOR
may explain the anti-aging effect of metformin [16,17].
Third, death rate was increased specifically in young
males, thus decreasing their mean life span. Still, met-
formin did not affect lifespan of the last 10% of surv-
ivors and maximum life span [8].

Death from “anti-aging”

Growth and aging share a common molecular mechan-
ism [18]. Growth factors, insulin, cytokines, nutrients,

and testosterone stimulate cellular growth in part by
activating the mTOR pathway [19-30]. When a cell
cannot grow in size, then activated mTOR contributes
to senescent phenotype [31-33]. By promoting cellular
aging, mTOR is involved in organismal aging and age-
related diseases [34]. mTOR is essential earlier in life
but also accelerates aging and age-related diseases
(cancer). (Note: This is a clear-cut example of antagon-
istic pleiotropy [35]. As a matter of fact, any genetic
pathway that accelerates aging must be beneficial earlier
in life, otherwise it would be eliminated by, whatever
weak, natural selection). Accelerated aging can be lin-
ked to vigor earlier in life [36,37]. In agreement, size
and weight is associated with faster aging [38].

However, the degree of early-life benefits is slightly
different in males and females. In the wild, young males
have a higher risk of death (from accidents, competition
and violence) than young females. (This is still the case
in modern men and women). The higher death rate
earlier in life, the more important is robustness. So
males need to be stronger and bigger, to fight and
compete and still survive. In many mammals (including
129/Sv mice and humans), males are larger. mTOR
drives cellular growth and muscle hypertrophy [22,39-
41], thus providing physical strength. Noteworthy, test-
osterone stimulates muscle cell hypertrophy via mTOR
[39]. Even further, inhibitors of mTOR decrease testo-
sterone levels in humans [42-44]. So it is reasonable to
think that mTOR contributes to vigor of young males.

While decelerating aging, inhibition of mTOR may
decrease robustness, tolerance to infections, cold temp-
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eratures and famine. This may be detrimental in unpro-
tected environment. As discussed in detail [36], hypo-
thetically, an anti-aging drug given to young men three
centuries ago (when 75% of individuals died before the
age of 26) would decrease lifespan due to death from
infections, starvation and violence. This would prefer-
entially eliminate weaker (and therefore slow-aging)
individuals.

For laboratory mice, the environment is not completely
protected because mice do not go to a doctor to treat
infections, for instance. When environment is not
completely protected, anti-aging treatment earlier in life
can shift death from aging to death from external
causes. Without repeating all arguments published
recently [36, 37], we can summarize: 1. Anti-aging
agents may be harmful in young mice, when environ-
ment is not completely protected (external causes of
death do exist). 2. This will affect males more than
females. 3. In such conditions, this will preferentially
eliminate weaker animals, who age slower. Robust,
faster-aging animals will survive until aging. This effect
will preclude extension of maximum lifespan, even if
the aging is slowed in remaining alive (but faster aging)
mice.

This may explain results by Anisimov ef al published in
this issue [8] and also may be applicable to other anti-
aging modalities like calorie restriction (CR) and
rapamycin. (Note: This may explain the lack of exten-
sion or even shortening lifespan by severe calorie
restriction started early in life in some strains of inbred
mice. If severe CR in young males leads to early death,
then mostly fast-aging males would survive and then die
relatively early too. Death of weak (slow-aging) males
early in life may conceal potential anti-aging effects).

There may be other explanations. Metformin can cause
side effects, which may be unrelated to its anti-aging
effect and even unrelated to its “clinical” target AMPK.
In humans, metformin can cause renal and gastro-
intestinal disturbances and other side effects. The
challenge is to develop low doses of metformin (and
especially their combinations with low doses of rapa-
mycin) to suppress aging process without causing side
effects. But even such modalities will not be probably
indicated to healthy boys.
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