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Abstract: DNA damaging agents and radiation, cytotoxins and anti-cancer drugs, telomere erosion and cytokines, culture
shock and mitogenic stimuli, oncogenes and tumor suppressors can induce both cell cycle arrest and cellular senescence.
Due to this semi-coincidence, senescence is confused with cell cycle arrest, or even more misleadingly, with growth
inhibition. With such misconceptions, cellular senescence cannot be linked to organismal aging. Also, the relation between
cancer and senescence is distorted. Here | discuss why the link between arrest and senescence is semi-coincidental and

how senescence is related to aging and cancer.

Quiescence versus senescence

In the adult organism, most cells are arrested but they
are not senescent. So cell cycle arrest is not a synonym
of senescence. Non-senescent arrest can be caused by
withdrawal of serum growth factors and nutrients
(Figure 1A versus B). Without growth factors, cells
become quiescent: low metabolism, protein synthesis
and cellular functions, no cellular size growth. Consider
an analogy. You are driving a car, pushing the gas
pedal (analogous to growth stimulation). Then you
release the gas pedal (an equivalent to serum
withdrawal), the car decelerates and stops. This is
quiescence, a reversible arrest.

But withdrawal of growth factors is not the only way to
arrest cell cycle. Induction of CDK inhibitors such as
p21, pl6, p57 can cause cell cycle arrest in the presence
of serum (Figure 1C). Serum growth factors, hormones,
high levels of nutrients and oxygen stimulate growth-
promoting pathways such as MAPK (mitogen-activated
protein kinase) and mTOR (Target of Rapamycin)
pathways [1,2]. (Furthermore, cancer cells have
constitutively over-activated by mutations mTOR and
MAPK pathways). While blocking the cell cycle, CDK
inhibitors do not deactivate growth-promoting pathways
such as mTOR and MAPK. In other words, while
growth is stimulated, cell cycle is blocked (Figure 1C).

By analogy, this is like pushing the gas and hitting the
brakes simultaneously, with an increasing force. This is
destructive.

In theory [3,4], over-activated growth-promoting
pathway, when the cell cycle is blocked downstream,
must lead to cellular hypertrophy (a large cell
morphology), pro-inflammatory and hyper-secretory
phenotypes, cellular overactivation with a feedback
signal-resistance and a compensatory deactivation of
some signaling pathways. Cellular hypertrophy will
cause compensatory activation of lysosomes, autophagy
(despite active mTOR) and beta-Gal-positivity. This
theoretical condition strikingly resembles senescence
caused by DNA damaging agents and radiation,
mitogenic stimuli, oncogenes and tumor suppressors [5-
9], which all induce CDK inhibitors, thus blocking the
cell cycle despite continuous growth stimulation (Figure
1C). Pushed by growth-stimuli, senescent cells
simultaneously have high levels of CDK inhibitors and
cyclins D and E [10-13]. Erroneously, it is commonly
repeated that senescence is an “exit from the cell cycle”.
In reality, it is an active arrest in very advanced points
of G1, G1/S and even G2. The senescent cell is driven
to cycle by the stuck accelerator pedal but is blocked by
the powerful brakes. The tension is manifested as
pseudo-DNA-damage response, an atypical response
without detectable DNA damage [14], perhaps similar
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Figure 1. Two types of cell cycle arrest. (A) Proliferating cells. Growth stimulation leads to mass growth, which is balanced by
cell division. (B) Quiescence. Withdrawal of growth factors deactivates both growth-promoting pathways and the cell cycle.
(C) Senescence. The block of the cell cycle, in the face of growth-stimulation, causes condition known as cellular senescence.

to a chronic atypical response, described as DNA-
SCARS [15]. Senescent cells secrete both mitogenic
and anti-mitogenic factors [16-27].

The conflict between ‘acceleration and braking’ leads to
inappropriate S-phase entry and, on the other hand, to
the loss of proliferative potential (PP). PP is not
proliferation, PP is a potential, a hidden quality of
arrested cells. The only way to measure PP is to remove
the brakes. For example, ectopic expression of p21
causes arrest, which becomes irreversible after 3-4 days,
meaning that cells cannot proliferate even after removal
of p21 [28,29]. Loss of PP defines cellular senescence
in cell culture, distinguishing it from reversible
quiescence. Still this does not imply that loss of PP is a
clinically relevant marker.

Cellular senescence in vitro and in the organism

In vitro, cellular senescence is defined by the loss of
proliferative potential (PP). Loss of PP seems to be one
of consequences of cellular overactivation and
correlates with cellular hypertrophy [29]. This marker
is universal: all senescent cells - fibroblasts and
epithelial cells, either normal or malignant - share this

marker. This is convenient. However, this marker is not
the most important for organismal aging [30]. From the
medical perspective, a single most important marker of
cellular senescence is increased cellular functions
(hyper-functions). At first, this statement may seem
startling, because hyper- functions were not considered
as markers of senescence. Or were they? Most studies
of senescence were performed in fibroblasts and tumor
cells of fibroblast origin. The classic function of such
cells is secretion. And hyper-secretory phenotype is a
well-known marker of senescence; a marker that, by the
way, links cellular senescence to organismal aging and
cancer [17-22,31]. Cellular functions are tissue-specific:
contraction for smooth muscle cells, secretion of
lipoproteins for hepatocytes, aggregation for platelets,
oxidative burst for neutrophils, bone resorption for
osteoclasts and so on. These hyper-functions lead to
age-related diseases, such as atherosclerosis, hyper-
tension, macular degeneration, increasing the probab-
ility of organismal death [32,33].

In cell culture, quiescence could be imitated by serum
withdrawal. (Figure 2A) Then re-stimulation leads to
proliferation (Figure 2A, right panel). In the organism,
most of the cells are arrested but not senescent.
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Stimulation can cause their proliferation. Examples
may include some (but not all) fibroblasts,
lymphocytes, stem and satellite cells. In quiescent
stem cells, over-activation of the mTOR pathway
causes stem cell proliferation and exhaustion [34-38].

In the organism, “for safety”, quiescent cells could be
put on a permanent “parking brake”: an arrest locked
by CDK inhibitors. Perhaps, adipocytes, neurons,
cardiomyocytes can serve as examples. In locked cells,
stimulation increases cell functions, instead of
proliferation. For example, adipocytes will accumulate
fat, whereas cardiomyocytes will enlarge and
endocrine cells will secrete. Over-stimulation can
cause cellular hyper-functions, secondary hormone/
stimuli resistance and even cell loss. This
chronic over-stimulation of initially quiescent cells
could be called physiological senescence. In the
organism, differentiated post-mitotic cells undergo

physiological senescence due to chronic over-
activation.

Physiological senescence can be modeled in cell
culture. Serum withdrawal arrests normal cells. Then
these quiescent cells can be additionally put on brakes:
a condition we named locked quiescence [39]. Then
re-addition of serum stimulates growth in size
(hypertrophy), senescent morphology and permanent
loss of PP. It was shown that differentiated cells,
especially in the organism, are indeed locked by CDK
inhibitors [40,41]. In theory, such cells could still be
quiescent or senescent. Over-stimulation of growth-
promoting pathways (such as mTOR) converts
‘locked’ quiescence into senescence [39], a process
that models physiological senescence. From cell
culture models to the organism, it is stimulation of
growth-promoting pathways rather than cell cycle
arrest per se that determines senescence.
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Figure 2. Two types of quiescence. (A) Simple quiescence. Cells are arrested due to lack of growth stimulation (left panel).
Addition of growth factors causes proliferation (right panel). (B) Locked quiescence. Differentiated cells are put on the brakes, to
avoid undesired proliferation. Mild stimulation of such cells causes functional responses. Excessive stimulation causes

physiological senescence.
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Figure 3. Gerosuppressants favor quiescence over senescence by inhibiting growth-promoting pathways. (A) Senescent cell.
(B) Gerossuppressants do not abrogate arrest but suppress the senescent phenotype converting senescence in locked

quiescence.

Cell cycle arrest and cancer

The most common introductory statement about
senescence is that it is a barrier to cancer. However, it is
cell cycle arrest that is a barrier to cancer. In fact,
avoidance of arrest is a common alteration in cancer.
And an even more common alteration is the activation
of growth-promoting pathways such as MAPK and
mTOR, which are involved in the senescent phenotype.
Activation of MAPK and mTOR makes cancer cells
pro-senescent: it is sufficient to impose cycle arrest in
order to reveal the senescent phenotype. The pro-
senescent phenotype due to overactivation of MAPK
and PI3K/mTOR can be linked to hallmarks of cancer
such as angiogenesis, apoptosis-avoidance, Warburg
effect, invasion and metastasis (I will discuss this in
forthcoming reviews). If so, then the pro-senescent
phenotype determines 4 out of 6 hallmarks of cancer
(see 6 hallmarks of cancer by Hanahan and Weinberg
[42]. Therefore, cancer depends on both the pro-
senescent phenotype and the disabled cell cycle control.
I suggest that cell cycle arrest typically leads to
senescence in cancer because cancer is a pro-senescent

state (over-activation of mTOR-centric network) and
cell cycle arrest simply allows its manifestation.

Tumor suppressors, gerosuppressors and gerosup-
pressants

Some tumor-suppressors (TS) such as Rb and p16 cause
cell cycle arrest. Other TS such as PTEN and TSC1/2
inhibit the growth-promoting mTOR pathway, which is
involved in the pro-senescent phenotype. An ultimate
tumor suppressor would have both activities: (a) cause
arrest (which is a barrier in cancer) and (b) suppress the
pro-senescent phenotype. In fact, such a tumor-
suppressor is p53 [43-50]. Suppression of the senescent
phenotype by p53 may be in part explained by the
inhibition of mTOR and hyper-metabolism by p53 [51-
59]. The notion that p53 suppresses senescence may
also explain life extension by p53 [60]. (Note: Deletion
of senescence-suppressing TS such as PTEN, TSC1/2
and VHL can lead to premature senescence. In
comparison, deletion of p53 bypass the senescence,
because loss of p53 simultaneously abrogates cell cycle
arrest. This leads to cancer: proliferating pro-senescent
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Figure 4. The opposite roles of senescence and cell cycle arrest. Cell cycle arrest is a barrier to cancer. In contrast, cellular

senescence promotes cancer and age-related diseases.

cells. I will address this topic in detail in my future
reviews).

Similarly, rapamycin suppresses the senescent
phenotype. In cells arrested by p2l, rapamycin
decelerates the conversion from locked quiescence to
senescence. Thus, rapamycin and other inhibitors of
mTOR can preserve PP in p21-arrested cells [13,29,61-
63]. Please do not misunderstand this as the abrogation
of cycle arrest and cancer-promotion. The terms
proliferation and proliferative potential (PP) should not
be confused. Rapamycin does not decrease p21, does
not prevent cell cycle arrest caused by p21, does not
‘unlock’ cells, does not force cells to proliferate, of
course. In contrast, it can inhibit proliferation on its
own. But in p21-arrested cells, rapamycin can preserve
the potential to proliferate (PP). Only when p21 and
rapamycin are removed, the potential can be
determined. Rapamycin does not “suppress” cell cycle
arrest. Rapamycin delays the conversion of arrest into
senescence. In some cell types, rapamycin can cause
cell cycle arrest. But while inhibiting proliferation,
rapamycin preserves PP.

I put emphasis on the preservation of PP by rapamycin
(rather than, for example, on the suppression of the

hyper-secretory phenotype, which rapamycin also
inhibits), simply because PP is viewed as a definitive
marker of senescence. Therefore, rapamycin is a
gerosuppressant by the current definition of cellular
senescence [64]. However, it is suppression of other
markers of senescent phenotype such as hyper-secretion
and other hyper-functions that are most clinically
relevant.

By simultaneously suppressing the senescent phenotype
and causing arrest, rapamycin can be viewed as an
ultimate tumor-suppressant. In fact, the hyper-secretory,
pro-inflammatory, pro-angiogenic phenotype are
markers of both senescence and cancer. I suggest that
the cancer-preventive effect of rapamycin [65] is not
because (or not only because) of cell cycle arrest but
because of suppression of the senescent phenotype,
especially in normal cells.

CONCLUSIONS

Cell cycle arrest (the good half) is only a part of the
equation of senescence. The second part is growth
stimulation, which actually causes the senescent
phenotype (the bad half). While cell cycle arrest is a
barrier to cancer, senescence (in both cancer and normal
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cells) is a prerequisite for cancer (Figure 4). This
extends the notion that the secretory phenotype
contributes to cancer and that cancer and aging have a
lot in common [22,66-68]. Furthermore, I suggest that
all hallmarks of senescence together, especially an
increase in tissue-specific cellular functions, caused by
cellular over-stimulation lead to all age-related diseases
(organismal aging) (Figure 4).

So cell cycle arrest is not senescence. In cell culture,
cell cycle arrest typically leads to senescence, because
the cell is over-stimulated by serum, nutrients,
oncogenes and so on. Therefore, cell cycle arrest is
sufficient to cause senescence, especially in cancer
cells. This is why arrest of cell cycle is semi-
coincidentally confused with senescence. Senescent
phenotype can be dissociated from cycle arrest. And
gerosuppressants can suppress the senescent phenotype
(including loss of PP) without abrogating (and even
increasing) arrest.
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