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mTOR pathway activation in age-related retinal disease
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Vision loss degrades the quality of life of aged
individuals. The major cause in industrialized countries
is age-related macular degeneration (AMD), a blinding
eye disease due to death of photoreceptors in the
macula, a specialized retinal region responsible for high
acuity vision. Photoreceptor death in AMD is thought to
follow damage to the retinal pigment epithelium (RPE)
[1], a monolayer of polarized, post-mitotic cells located
between the photoreceptors and the choroidal blood
supply that performs a variety of crucial tasks [2]. One
proposed mechanism of RPE dysfunction in AMD
posits a lifetime of oxidative damage leading to deposits
(termed drusen) between the RPE and choroid,
inflammation [3], and diminished RPE mitochondrial
function [4, 5]. Macular RPE mitochondrial DNA from
AMD eyes is more damaged than corresponding
macular nuclear DNA [6], and macular RPE
mitochondrial DNA damage correlates positively with
AMD severity [7]. To model RPE mitochondrial DNA
damage in AMD, we selectively ablated mitochondrial
DNA replication and transcription in the RPE of
postnatal mice [8]. The resulting deficit in RPE
oxidative phosphorylation (OXPHOS) caused a slowly
progressive photoreceptor degeneration, as well as a
number of RPE morphological changes similar to those
seen in AMD. The most prominent early RPE changes
were hypertrophy and dedifferentiation, which
coincided with activation of the mTOR pathway in
OXPHOS-deficient RPE cells.

Robust mTOR activation in the context of OXPHOS
deficiency is counterintuitive because mTOR integrates
trophic factor and nutrient availability signals to
regulate cell growth and proliferation [9], and poisoning

of mitochondrial energy production inhibits mTOR
[10]. The fact that ATP levels in OXPHOS-deficient
RPE cells were not substantially different from controls
helps to resolve this apparent paradox. Levels of
selected glycolytic metabolites were increased by
several orders of magnitude, indicating a large
glycolytic flux capable of generating ATP at a high rate.
However, dependence on aerobic glycolysis is not a
requirement for mTOR activation; acute treatment of
wild-type mice with a strong oxidant that the targets the
RPE also activated mTOR and triggered dedifferen-
tiation, with profound negative consequences for
adjacent photoreceptors [8]. Features suggestive of RPE
hypertrophy and/or dedifferentiation have been reported
for a number of other mouse retinal degeneration
models [11-13], suggesting that a mTOR-associated
RPE stress response may be quite general.

OXPHOS deficiency leads eventually to RPE atrophy,
which is seen more commonly in AMD than RPE
hypertrophy. Our findings suggest that RPE hypertrophy
may be present at earlier stages of AMD. Indeed, ocular
coherence tomography imaging demonstrated thickened
macular RPE more frequently in early AMD eyes than in
advanced AMD or control eyes (C. Zhao, unpublished).
RPE hypertrophy may be less prominent in advanced
AMD because drusen and diminished transport through
aged Bruch’s basement membrane [14] may restrict
access of RPE cells to nutrients from the choroidal blood
supply. RPE cells in most mouse models are presumably
not limited in this regard, facilitating mTOR activation.
Hence, the stress response we have identified may shed
light on RPE-related disease processes in which nutrients
are readily available.
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Intriguingly, pharmacological inhibition of mTORCI
with rapamycin blunted RPE dedifferentiation and
hypertrophy and preserved photoreceptor numbers and
function for both the metabolic and oxidative stress
models [8]. Rapamycin has recently been shown to have
the remarkable ability to increase the longevity of mice,
even when administered late in life [15]. Our results
thus connect age-dependent retinal degeneration with a
pathway known to be critical for the determination of
lifespan. An in depth understanding is needed of the
requirements for mTOR activation in the RPE and the
mechanism by which the pathway mediates RPE
dedifferentiation, with the goal of combating age-
related retinal disease and extending human healthspan.
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