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Resveratrol-activated SIRT1 in liver and pancreatic B-cells: a Janus
head looking to the same direction of metabolic homeostasis
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Abstract: Sirtuins are energy sensors which mediate effects of calorie restriction-induced lifespan extension. The
mammalian sirtuin homolog SIRT1 is a protein deacetylase playing a central role in metabolic homeostasis. SIRT1 is one of
the targets of resveratrol, a polyphenol that has been shown to increase lifespan and to protect animal models against
high-calorie diet induced obesity and insulin resistance. The beneficial effects of resveratrol mediated by SIRT1 activation
can be contributed by different organs. Among them, the liver and pancreatic B-cells have been shown to be responsive to
resveratrol in a SIRT1-dependent manner. Downstream of SIRT1, transcription factors being activated are tissue-specific, in
turn inducing expression of metabolic genes in an apparent paradoxical way. In this review, we discuss specificities of SIRT1
effects in the liver versus pancreatic B-cells, ultimately converging towards metabolic homeostasis at the organism level.

Effects of SIRT1 and its activation by resveratrol has wvarious molecular targets; e.g. SIRTI, AMP-
activated protein kinase (AMPK), or antioxidants
SIRT1 is a member of the Sirtuins, a conserved family properties. These targets might be activated differently
of NAD'-dependent proteins found to be involved in regarding specific organs, rendering extrapolation of the
aging processes. Over-expression of the yeast Sir2 mechanisms delineated in one tissue to the other
increases lifespan in many organisms, whereas deletion hazardous. Therefore, the positive effects of resveratrol
or mutations of Sir2 lead to reduced lifespan [1-3]. on glucose homeostasis reported in animal models
Seven human homologs of Sir2 have been identified, deserves further investigations in order to understand
named SIRTI1 to SIRT7 [4, 5], which can function as the specific contribution of the different organs
deacetylase or as mono-ADP-ribosyltransferase. As implicated in this response [7, 9, 10]. For instance,
sirtuins are dependent on the NAD'/NADH ratio, they resveratrol effects might be explained by its action on
are sensitive to the cellular energy and redox state of the the liver, but also contributed by effects on the
cell, conferring them a role as metabolic sensors. SIRT1 pancreatic B-cell. We will now discuss these two tissues
is mainly found in the nucleus, where it functions as a in more details.
transcriptional repressor via histone deacetylation.
Resveratrol, a natural polyphenol found for instance in SIRT1 and resveratrol in pancreatic B-cells
red grapes and wine, is well recognized as a SIRT1
activator [6]. Accordingly, resveratrol is the subject of In pancreatic islets, functions and targets of SIRT1 are
great interest since it was shown to exert beneficial still poorly characterized, as very few studies have
effects on glucose and lipid metabolism, to improve focused on B-cells to date. Metabolic efficiency is
exercise performance, and to extend lifespan in rodents crucial for B-cell function as glucose metabolism is
[7, 8]. However, detailed mechanisms mediating tightly coupled to the control of insulin secretion [11].
resveratrol effects remain unclear since this molecule Originally, two papers have shown that SIRTI
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positively regulates glucose-stimulated insulin secretion
in pancreatic B-cells [12, 13]. The SIRT1 activator
resveratrol  potentiates  glucose-stimulated insulin
secretion, both acutely and secondary to chronic
treatment. Acutely, resveratrol effects are observed
already at 1uM in INS-1E insulinoma cells (Figure 1A).
Following a 24-hour exposure, the effects of resveratrol
are maintained even after removal of the compound, as
observed in INS-1E cells and human islets [14]. In islets
obtained from a type 2 diabetic donor, resveratrol was
reported to partially restore the secretory response to
glucose [14]. Several alternative mechanisms may
explain the chronic effects of resveratrol on insulin
secreting cells.

Resveratrol can bind to the sulfonylurea receptors

(SUR), the regulatory subunits of Ksrp-channels [15].
Closure of Karp-channels promotes elevation of cyto-

90

solic Ca™*, secondary to the opening of voltage-gated
Ca®" channels, thereby inducing insulin exocytosis.
Resveratrol is structurally similar to DIDS (4,4’-
dithiocyanatostilbene-2,2’-disulphonic acid), a synthetic
Katp-channel activator. Moreover, resveratrol treatment
has been shown to displace binding of the sulfonylurea
glibenclamide from SUR channels [15]. Therefore, one
might speculate that resveratrol effects would be similar
to those of sulfonylureas. In order to test this option, we
exposed INS-1E cells for 24 hours to sulfonylureas
(glibenclamide and tolbutamide), DIDS, and
resveratrol. Glucose-stimulated insulin secretion was
then tested in the absence of the compounds following
the 24-hour treatment. As shown in FigurelB, only
resveratrol potentiated the secretory response, in
accordance with previous data [14], showing that the
chronic effects of this phenol are not mediated by SUR
channels.
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Figure 1. Acute and chronic effects of resveratrol (RSV) on glucose-stimulated insulin secretion in INS-1E B-
cells. Acute effects of RSV (A). Following a 2h pre-incubation period without glucose, INS-1E cells were stimulated for 30
min in KRBH with 2.5 or 15 mM glucose (Glc) in the absence (Control) or presence of 1, 5, and 25 uM of RSV. Values are
means + SE of 6 independent experiments. *p<0.05, **p<0.01 versus 2.5 mM Glc of the corresponding group; §p<0.05
versus Control group at 15 mM Glc. Chronic effect of sulfonylureas and RSV (B). INS-1E cells were cultured for 24h in the
absence (Ctl) or the presence of 1 uM glibenclamide (Glib), 250 uM tolbutamide (Tolb), 5 uM DIDS, and 25 uM RSV. Next,
cells were washed and pre-incubated without drugs and without glucose for 2h. Then, cells were incubated for 30 min in
the absence of the tested compounds at 2.5 or 15 mM Glc. Values are means + SE of 3 independent experiments. *
p<0.05, **p<0.01 versus 2.5 mM Glc of the corresponding group; §p<0.05 versus Ctl group at 15 mM Glc.
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Figure 2. Proposed model for the effects of SIRT1 in the liver and the pancreatic B-cell on transcription
factors and metabolic enzymes (GK, glucokinase; G-6P, glucose-6-phosphatase; Glut-2, glucose transporter 2).

The effects of resveratrol on glucose-stimulated
insulin secretion are associated with enhanced
catabolic efficiency of the sugar. Indeed, chronic
treatment of insulin-secreting cells with resveratrol
results in elevated glycolytic flux, increased glucose
oxidation and oxygen consumption, thereby producing
more ATP upon glucose stimulation [14]. The
increased metabolism-secretion coupling observed in
resveratrol-treated cells is favoured by up-regulation
of the glucose transporter Glut2 and the glycolysis-
initiating enzyme glucokinase, permitting increased
provision of substrates into the mitochondria. Elevated
expression of Glut2 and glucokinase might be
secondary to the reported up-regulation of Pdx1 and
HNF-1a [14], as these transcription factors regulate
Glut2 expression [16, 17]. Upstream of these
regulations, we could show that the effects of
resveratrol on B-cells are fully mediated by SIRTI.
Inhibition of SIRTI1, either pharmacologically using
the EX-527inhibitor or genetically through expression
of a mutant form lacking deacetylase activity, reduces
resveratrol effects on glucose-stimulated insulin
secretion. Conversely, overexpression of SIRT1 in
INS-1E cells further increases resveratrol effects on
insulin secretion [14].

Collectively, data indicate a sequence of events in
which resveratrol primarily activates SIRT1, inducing
expression of key transcription factors for the B-cell,
such as Pdx-1 and HNF-la (Figure 2). This in turn
promotes expression of Glut2 and glucokinase, thereby
increasing the secretory response to glucose [14].
Hence, resveratrol treatment might mimic starving
conditions, rendering the B-cell more sensitive for the
awaited next rise in glucose levels.

Activation of AMPK by resveratrol and relationship
to SIRT1

Resveratrol stimulates AMPK in HepG2 hepatoma [18]
and INS-1E insulinoma [14] cell lines, as well as in
various tissues [19-21]. Such AMPK pathway could
account for some of the beneficial effects of resveratrol
reported in mice fed a high-fat diet [7, 8]. Cross talk
between AMPK and SIRT1 has been reported in
different experimental systems [22, 23]. However,
current information about the hierarchy governing the
relationship between these two enzymes is at first sight
contradictory, although discrepancies might reflect
tissue specificities. Indeed, it was proposed that AMPK
activation would be downstream of SIRT1 in hepato-
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cytes [19], upstream in muscle cells [23, 24], and
independent of SIRT1 in neurons [20]. In insulin
secreting cells, we observed that resveratrol treatment
increased AMPK phosphorylation [14]. However,
although resveratrol activates both SIRT1 and AMPK,
only SIRTI1 activation accounts for the potentiating
effects of resveratrol on metabolism-secretion coupling.

SIRT1 and resveratrol in hepatocytes

In the liver, SIRT1 is up-regulated after fasting or
calorie restriction in rodents [25]. SIRT1 is also
activated by resveratrol, inducing deacetylation of PGC-
la and thereby mitochondria biogenesis [7]. Overall,
activation of hepatic SIRT1 increases gluconeogenic
genes and represses glycolysis [26]. The gluconeogenic
activity of hepatocyte nuclear factor 40 (HNF-40) is
increased by SIRTI1-induced deacetylation of PGC-la
[26]. FoxO1, a member of the forkhead transcription
factors, is also deacetylated by resveratrol, thereby
promoting hepatic gluconeogenesis [27, 28]. In
hepatocytes, activation of gluconeogenic gene
expression by PGC-1la requires close cooperation with
FoxO1 [29] and HNF-4a [30], regarding for instance
glucose-6-phosphatase (Figure 2). In rats, administra-
tion of resveratrol results in FoxOl deacetylation,
accompanied by repression of glucokinase gene
expression [27]. In isolated hepatocytes, it was shown
that the repression of glucokinase induced by
resveratrol is contributed by the interaction between
FoxO1 and HNF-4a [27]. Taken as a whole, activation
of SIRT1 by resveratrol in hepatocytes mimics starving
conditions, reducing glucose usage and inducing
glucose production (Figure 2).

SIRT1 mediates different effects
pancreatic -cell

in liver and

In most cells types, FoxO1 transcriptional activity is
switched off by phosphorylation-mediated nuclear
exclusion. However, when cells are subjected to stress,
FoxO1 relocates to the nucleus where it is deacetylated
by SIRTI1 [31]. In B-cells, FoxOl is constitutively
phosphorylated, and therefore cytoplasmic, presumably
reflecting activation of insulin receptor signalling by
endogenously produced insulin [32]. Induction of
lipotoxicity by palmitate triggers accumulation of
FoxOl1 into the nucleus of insulin-secreting cells [33] and
FoxO1 up-regulation impairs insulin secretion in B-cells
[34]. Therefore, under normal non-pathological
conditions, FoxO1 is essentially cytoplasmic in B-cells,
regardless of glucose stimulation. Resveratrol treatment
does not alter the cytoplasmic localization of FoxOl in
insulin-secreting cells [14]. In the liver, FoxOl is
phosphorylated upon insulin signalling, promoting

nuclear exclusion [35]. Conversely, low-insulin fasting
periods favour nuclear localization of FoxOl in
hepatocytes and induction of transcriptional activity
through SIRT1-mediated deacetylation.

PGC-1a is another major target of SIRTI. In
hepatocytes, PGC-1a induces gluconeogenic machinery
and represses glucose consumption. In B-cells, PGC-1a
over-expression reduces glucose metabolism and the
accompanying secretory response, suggesting a switch
to lipid utilization [36]. In diabetic animal models,
PGC-1a is up-regulated in islets [36] and in the liver
[37], resulting in increased hepatic glucose production.
Regarding hepatocyte nuclear factors, treatment of
insulin secreting cells with resveratrol induces HNF-1a
gene expression, while HNF-4a is not affected [14].

Overall, SIRT1 activation promotes up-regulation of
glucokinase in B-cells, while the same enzyme is down-
regulated in hepatocytes. The apparent contradiction of
such opposite effects indicates that the common master
regulator SIRT1 signals starving state to different
organs, thereby inducing specific metabolic responses.

Conclusion

The beneficial effects of resveratrol on the liver and
pancreatic islets are dependent on SIRT1 activation,
although SIRT1 targets are different according to each
tissue (Figure 2). In the liver, resveratrol mostly acts on
PGC-1a, FoxO1, HNF-40, and AMPK. In the B-cell the
main identified targets are HNF-1a and Pdx1. To date,
the precise mechanisms of SIRT1 activation are still
poorly understood, in particular regarding pancreatic
islets. Tissue specificity renders investigations more
challenging but at the same time rather fascinating
considering the whole metabolic control of energy
homeostasis.
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