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The widespread use of unicellular and invertebrate
model systems has revealed that the molecular
mechanisms  underlying cellular functions are
exceedingly well conserved. The expanding research
into the molecular mechanisms of aging keeps yielding
this answer too [1,2]. A perfect example of this is a
study by Gonidakis, Finkel and Longo appearing in the
present issue of Aging, which shows that a disruption of
the biosynthesis of ubiquinone leads to increased
survival of E. coli during stationary phase, associated
with an increased resistance to treatments that induce
oxidative stress [3]. These effects are dependent upon
the presence of an intact arcA gene, which encodes the
regulatory component of the ArcA/ArcB system, a
hypoxia-inducible system of transcriptional regulation.

To understand why these findings might be an example
of evolutionary conservation a little background is
needed. Interventions that disrupt mitochondrial
function can increase lifespan in a variety of organisms
including yeast [4], Caenorhabditis elegans [5-10],
Drosophila [11], and mice [12-14]. One type of
intervention is the disruption of mitochondrial function
through the reduction of the expression of mitochon-
drial genes by RNAI, which increases lifespan in worms
[5,10] and in flies [11], possibly via a mitochondria-
specific stress response [9]. Another type of inter-
vention is a specific alteration of mitochondrial electron
transport that alters the generation of reactive oxygen
species (ROS) [15,16]. For example, C. elegans isp-1
and nuo-6 mutants, which carry point mutations in
subunits of the mitochondrial electron transport chain
(ETC) display an elevated generation of mitochondrial
superoxide which appears to be causal to their increased

lifespan. Indeed, antioxidants suppress the mutants’
longevity and pro-oxidant treatment of the wild type
phenocopies it [16]. clk-1 (called Mclkl in mice) is
another gene that has been studied in this context.
It encodes a mitochondrial hydroxylase that is necessary
for the biosynthesis of ubiquinone [6,17,18]. Ubiqui-
none (a.k.a. co-enzyme Q) is an electron transporter and
antioxidant that is ubiquitous in the membranes of all
organisms [19]. C. elegans clk-1 mutants [20] and
mouse Mclkl™” mutants [12,13] are long-lived and have
been shown to have elevated generation of mito-
chondrial ROS [16,21]. In cultured vertebrate cells
mitochondrial ROS have been shown to help stabilize
and thus induce the protective activity of the hypoxia-
inducible factor lo (HIF-la) [22-24]. It is striking
therefore that HIF-1a has been tentatively implicated in
the mechanisms of longevity of both C. elegans clk-1
[25] and mouse MclkI"™™ mutants [26].

Of course bacteria have no mitochondria; however, as
the evolutionary ancestors of mitochondria, they have a
plasma membrane ETC partly homologous to that of the
organelle. As in mitochondria, the bacterial ETC
appears to produce significant amounts of ROS [27].
Like eukaryotic cells, they have transcription factors
sensitive to hypoxia. The ArcA/ArcB two-component
system is one of the key pathways up-regulated in
response to anaerobic conditions. Although not gen-
etically homologous to eukaryotic HIF-1a, there are
interesting parallels between the systems. While
activated by the redox state of the bacterial quinone
pool rather than by ROS [28-30], Arc activation is
required for the resistance of E. coli to induced
oxidative stress [31]. Thus, the work of Longo and co-
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workers in E. coli suggests that there might be a truly
universal link between ubiquinone, ROS generation,
hypoxia-sensitive transcription factors and cellular
survival.
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