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Conserved role of Ras-GEFs in promoting aging: from yeast to mice
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In a new article published in the journal Aging, Borras
et al. report that Ras-GRF1 homozigous deletion
increases both median and maximum longevity in
laboratory mice [1]. The human Ras, superfamily now
counts more than 150 different proteins subdivided into
five different protein families: Ras, Rho, Rab, Arf and
Ran. These protein families regulate many cellular
processes [2] including cellular differentiation and
proliferation (Ras), cell citoskeleton organization and
cell shape (Rho), intracellular protein trafficking (Rab,
Arf) and nucleo-citoplasmic transport (Ran).

Ras protein, the founding member of the small GTP
binding protein superfamily, is found mutated in 30% of
all human tumors and, in mammals, consists of three
genes and four gene products (N-Ras, H-Ras, K-Ras4A
and KRas4B). Many of these proteins are ubiquitously
expressed but regulated by a multitude of specific
Guanine nucleotide Exchange Factors (GEFs) and
GTPase Activating Proteins (GAPs). In fact, even
though this protein superfamily has the endogenous
capability to hydrolyze the bound GTP, GEFs and
GAPs, respectively catalyze the activating and the
inactivating reactions [3]. It is interesting to note that,
although Ras-GRF1 (one of the mammalian GEFs)
shows only partial homology to the yeast CDC25 (one
of the two yeast GEFs) and mammalian and yeast Ras
proteins have limited functional homology, both
exchange factors are regulated by the PKA
serine/threonine kinase [4, 5] suggesting the existence
of conserved Ras-dependent signaling networks. Both
RasGRFs were first discovered for their ability to
exchange the nucleotide bound to Ras proteins [6, 7] but
these multidomain proteins can have additional activities.

Other than the REM and CDC25 domain, capable of
exchanging the Ras-bound GDP, full length RasGRFs
contain, in fact, a PH domain that can interact with the
NGEF receptor TrkA [31] and an IQ domain capable of
calmodulin binding and responsible for calcium
modulation [8; 9]. It also contains a second PH-DH
domain that is capable of binding to membrane bound
PI(4,5)P2, microtubules [10], phosphatidic acid, Rho
and Rac GTPase [11, 12, 5] and spinophilin, a scaffold
protein that interact with actin filaments and p70 S6
kinase [13]. It is therefore possible that the RasGRF1 -
/- mouse phenotype may be due to the impairment of
GTP binding proteins other than Ras or to inhibition of
other signaling cascades. However, it must be noted that
Ras-GRF1 signaling is required for normal beta cell
development and glucose homeostasis and that isolated
islet from GRF1 knockout fail to activate Akt and Erk
[14] suggesting a major role of RasGRFI in Ras
activation in this cell type. A clear but much reduced
effect of the same knockout can be also seen in the
amount of activated Erk protein in isolated retina [15].

Ras-GRF1 was previously implicated in beta cell
langherans islet development, glucose homeostasis [14],
learning and memory impairment and retinal defects
[16, 17, 18]. More recently [19] Ras-GRF1 has been
invoked as a possible explanation for the longevity
observed in mice obtained without paternal contribution
[20]. These mice generated using two sets of female
genomes display increased average longevity and
reduced body weight. Since the RasGRF1 locus is
imprinted in female gametogenesis, leaving the whole
protein production to the paternal allele, it was argued
that bi-maternal condition is functionally equivalent to
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the RasGRF1 deletion [19].

Ras-GRF1 is normally expressed in  brain
(hypothalamus and hippocampus), pancreatic cells and
skeletal muscle [21]. Messenger length and composition
are quite heterogeneous because the Ras-GRF1 locus is
heavily affected by alternative splicing. This results in a
variety of mRNA isoforms that show tissue and
developmental specific expression. Consequently,
protein isoforms range from a 140 KDa full-length
protein expressed in brain and in pancreatic islet to the
smallest 20kDa isoform Ras-GRFp, expressed in mouse
pancreas [21]. These isoforms share only some of the
functional domains raising the possibility that different
isoforms may perform different tasks.

In their study, Borras et al. [1] find increased average
and maximal Lifespan in RasGrfl-/- mice. Survival
curves revealed a marked increase (20%) in the average
lifespan of RasGrfl-/- male mice (mean values WT:
100.5+4.2 weeks and RasGrfl-/-: 120.7+4.7 weeks;
median WT: 104 weeks; RasGrfl-/-: 124 weeks) and
mice with RasGrfl-/- showed better motor coordination
than controls. At the molecular level they find: a)
Increased Expression of the 16S rRNA in RasGrfl-/-
mice. 16S rRNA is one of the mitochondrial rRNA and
mitochondrial gene expression and function has been
demonstrated to positively correlate with longevity in
organisms from yeast to human [40, 41, 42, 43] b)
Increased expression of SIRTI in RasGrfl-/- mice.
Sirtuins play a role in a variety of diseases [44], but
their importance in mammalian lifespan is not clear
[45]. ¢) Maintained in vivo glucose uptake in aged
RasGrfl-/- mice.

Reduced glucose uptake is associated with aging [39].
They analyzed the in vivo glucose uptake in young and
old animals showing higher uptake levels in RasGRFI-
/- mice with respect to the wild type of the same age, d)
RasGRF1-/- mice displayed reduced IGF1 activity and
blood metabolomic analysis showed clear similarities
with calorie-restricted animals. IGF1 activity has a
consistent effect on the aging process [23], suggesting
that the downstream Ras pathway may play a central
role in this process in mammals as it does in yeast [23].
Higher glycogen content in mice depleted of the
RasGRF1 was also observed. Notably, glycogen and
trehalose content positively correlates with stress
resistance and Ras/AC/PKA depletion in yeast while
constitutively activated Ras/AC/PKA pathway reduces
both carbohydrate content [22]. Borras et al. suggest the
longevity  phenotype observed in mice with
homozygous Ras-GRF1 deletion may be the outcome of
decreased Ras activity.

In yeast the Ras, Tor and Sch9 signaling pathways are
partly responsible for integrating nutrient inputs into
cell growth, division and aging [23]. Impairment of the
Ras/AC/PKA pathway increases stress resistance and
longevity [24, 25, 26] through different downstream
effectors whose roles are functionally conserved in
higher  eukaryotes including mammals [23].
Mechanistically, downregulation of Ras/AC/PKA in
yeast provokes relocalization/activation of the
transcription factors Msn2/4 [28], activation of the
transcription factors Gisl through Riml5, [29, 26, 28,
30] and Hsfl activation [29]. All these factors enhance
cellular protection systems activating stress response
genes such as SODs, catalase, HSPs, autophagy and
probably many others. [31, 23, 27, 28].

Orthologs of genes that function downstream of Ras in
yeast have also been implicated in longevity extension
in mice. Deletion of the mouse adenylate cyclase type 5
and the consequently PKA downregulation extends
lifespan, stress resistance and mediates upregulation of
SODs [32] and mice lacking PKA RII or CP subunits
are protected from age-related deleterious changes such
as weight gain, hypertrophic liver and cardiac
dysfunction and enlargement [33, 34]. In addition,
serum from a cohort of individuals with Growth
Hormone Receptor (GHR) mutations, showing very low
cancer and diabetes incidence, inhibited the expression
of N-Ras, TOR and PKA when added to cultured
primary human epithelial cells [35].

It is therefore tempting to propose that the pro-longevity
effect of the homozygous Ras-GRF1 deletion observed
by Borras is due to a reduced activity of the Ras or an
analogous pathway and to consider that the increased
longevity observed may be evidence for the conserved
role of the Ras pathway in the aging process in organisms
ranging from yeast to mammals [49]. However, the
presence of more isoforms of the Ras-GRF1 coupled
with the loose ligand specificity of Ras-GRF1 that is
capable to bind Ras, Rac, Rho GTPase, microtubules,
PI(4,5)P2 and fosfatidic acid indicates that additional
studies are necessary to determine how altered Ras-GRF1
signaling promotes aging in mammals.

In summary, the identification of a pro-aging role of Ras
in aging therapy is an important and welcomed discovery
especially considering that drug companies have
identified a number of compounds capable to inhibit
GEFs such as Brefeldin A (large ArfGef), SecinH3
(small ArfGef) and NSC23766 (RacGef) [36, 37, 38].
These examples demonstrate that pharmacological GEF
inhibition may be a feasible strategy to extend longevity.
In particular, the possibility to obtain GEF inhibition,
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stabilizing the interaction between the G protein and its
GEF, an approach described as “interfacial inhibition”
[36], is very interesting because the compound doesn’t
need to compete with the natural substrate and hence
inhibition may be obtained even by low affinity
compounds. Other interfacial inhibitors are already in
clinical practice. Rapamycin for example, which
inhibits mTOR signaling, has been shown to extend the
life span of mice [46, 47, 48].
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