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Abstract: Malnutrition is common among older persons, with important consequences increasing frailty and morbidity and
reducing health expectancy. On the contrary, calorie restriction (CR, a low-calorie dietary regimen with adequate nutrition)
slows the progression of age-related diseases and extends the lifespan of many species. Identification of strategies
mimicking key CR mechanisms — increased mitochondrial respiration and reduced production of oxygen radicals — is a hot
topic in gerontology. Dietary supplementation with essential and/or branched chain amino acids (BCAAs) exerts a variety
of beneficial effects in experimental animals and humans and has been recently demonstrated to support cardiac and
skeletal muscle mitochondrial biogenesis, prevent oxidative damage, and enhance physical endurance in middle-aged
mice, resulting in prolonged survival. Here we review recent studies addressing the possible role of BCAAs in energy
metabolism and in the longevity of species ranging from unicellular organisms to mammals. We also summarize
observations from human studies supporting the exciting hypothesis that dietary BCAA enriched mixture supplementation
might be a health-promoting strategy in aged patients at risk.

INTRODUCTION palatable energy-dense foods increases fat accumulation

and vulnerability to a range of age-related diseases,
At an age when proper nutrition is a fundamental health including type 2 diabetes, cardiovascular disorders, and
requirement, almost half the elderly people in developed cancer. A substantial number of older people in
countries are not adequately nourished. By the widely westernized countries are overweight. Although the
used Mini Nutritional Assessment, the reported increase in the relative risk for death that is associated
prevalence of nutritional risk in older subjects is with being obese is not as great in older subjects as it is
approximately 45% in the community, with higher in young adults, functional capacity, mobility and
values in domiciliary care settings or hospitals and 84% quality of life are significantly reduced in the obese
to 100% in residential care facilities [1]. Malnutrition is elderly [3]. On the other side, undernutrition is a
defined as a state in which a deficiency, excess or common feature among aged individuals, due to
imbalance of energy, protein and other nutrients causes multiple reasons that include reduced appetite and food
adverse effects on body form, function and clinical intake — the physiologic ‘‘anorexia of aging’> — and
outcome [2]. Excess caloric intake or consumption of numerous nonphysiologic factors, i.e., impaired nutrient
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absorption and other age-related medical, psychological
and social changes [1, 2]. Inadequate nutritional intake
may conduct to a global functional decline referred to as
frailty, a newly recognized geriatric syndrome due to
excess demand imposed upon reduced capacity [4].
Particularly, potein-energy undernutrition is associated
with reduced strength, decreased bone mass, immune
dysfunction, anemia, impaired cognitive function, poor
wound healing, delayed recovering from surgery and
higher hospitalization rate and is a strong independent
predictor of mortality in elderly people [3].

Geriatric nutrition research aims to decipher the
molecular mechanisms involved in the effects of dietary
nutrients and to clarify their efficacy in the attainment
of healthy aging. Several studies focused in particular
on the effects of varying nutrient supply on animal and
human longevity, with responses strongly dependent on
genotype, age, nutrients, and regulation of nutrient-
sensing pathways [5, 6].

Calorie restriction (CR), a low-calorie dietary regimen
without malnutrition, decreases the incidence of several
age-associated disorders and is considered the gold-
standard, non-genetic approach for lifespan extension [7].
A body of evidence in several organisms demonstrates
that an increase in mitochondrial activity, together with
activation of the reactive oxigen species (ROS) defense
system, is associated with the salutary effects of the CR
regimen, [7, 8]. Although it has beneficial effects in
humans [9], long-term CR requires a major commitment
of will power and its possible disadvantages remain to be
determined, particularly in the elderly [10]. Therefore,
the concept of calorie restriction mimetics — that could
provide the health benefits of CR without reduction in
food intake — has become a hot area of investigation
within gerontology [10].

Previous observations in yeast suggested that the
branched-chain amino acids (BCAAs) leucine,
isoleucine, and valine might be potential candidates in
promoting survival [11]. We recently demonstrated that
long-term dietary supplementation with a specific
BCAA-enriched amino acid mixture (BCAAem)
increased average lifespan of male mice [12]. This was
accompanied by increased mitochondrial biogenesis and
sirtuin 1 (SIRT1) expression and by up-regulated ROS
defense system, with reduced oxidative damage, both in
cardiac and skeletal muscles of middle aged mice [12].
The present article will analyse existing knowledge
from various model organisms, from yeast to mammals,
as well as from human studies, as a contribution to
explore the possible effects of promoting mitochondrial
function through BCAA supplementation on the health
expectancy of aged subjects.

Model organisms

Saccharomyces cerevisiae

The budding yeast, Saccharomyces cerevisiae, has been
widely used for the identification of genes and cellular
and biochemical pathways that affect the aging process.
In wunicellular yeast, aging mechanisms can be
investigated by measuring replicative lifespan (RLS, the
number of daughters produced by each dividing mother
cell), or chronological lifespan (CLS, the capacity of
stationary Gy cultures to maintain viability over time)
[13]. CR, that is known to lengthen the mean and
maximum lifespan of many species [7], extends both
RLS and CLS [14-16]. The NAD'-dependent histone
deacetylase, Sir2, a well-characterized RLS factor [17],
is required for yeast RLS extension by CR [14]. Both
yeast RLS and CLS are also affected by genetic
interventions on lifespan effectors related to nutrient
signaling, i.e., deletion of the yeast Sch9 gene [which is
homologous to the mammalian Akt/PKB implicated in
the insulin-like growth factor (IGF) signaling] and
mutations in the target of rapamycin (TOR) signaling
pathway [18-20]. Saccharomyces cerevisiae is a
facultative anaerobe that, under standard laboratory
growth conditions (2% glucose), generates ATP largely
by fermentation. Interestingly, deletion of the TORI
gene and CR cause a shift in glucose metabolism from
fermentation — based on anaerobic glycolysis — toward
respiration — based on oxidative metabolism involving
the electron transport chain (ETC) — in both lifespan
models [15, 20, 21], revealing a strong link between
prolongevity effects and mitochondrial function.

In detail, moderate CR (modelled in yeast by reducing
the glucose content of the media from 2% to 0.5%)
leads to a 25% increase in the RLS together with
increased transcription of respiratory genes and a higher
rate of oxygen consumption [21]. Overexpression of the
transcription factor Hap4, that causes a switch from
fermentation to respiration, is sufficient to increase
yeast RLS by 35% [21]. Gowth at 0.5% glucose fails to
extend RLS in cyt/ yeast mutants with impaired
electron transport, suggesting that the metabolic shift
toward respiration is necessary for lifespan extension
mediated by CR [21]. This finding has been questioned
by other studies, showing that increased respiration is
not required for RLS extension by CR [22], in that CR
at very low (0.05%) glucose concentrations increased
lifespan in yeast strains lacking mtDNA (po cells) or in
cytl mutants [22]. However, the fact that alternate
pathways promoting longevity are induced in yeast
strains lacking respiratory capacity does not negate the
role of mitochondrial respiratory function in CR-
induced prolongevity when the organelles are functional
[23]. An increase in genes involved in respiratory
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metabolism and mitochondrial function and an
induction of tricarboxylic acid (TCA) cycle, at least
partially due to Hap4 up-regulation, has been recently
reported to play a striking role in yeast CR lifespan
extension models (0.1% glucose or elimination of
nonessential amino acids) [24].

Saccharomyces cerevisiae has also served as a model
organism to investigate the role of amino acid
homeostasis in aging. It has been found that low levels
of essential amino acids reduce CLS. Further, CLS has
been recently studied in yeast grown in media
supplemented with different amino acids. Increased
availability of leucine, isoleucine and valine extended
CLS and reduced the expression of GCN4, a
transcriptional regulator of general amino acid control
pathway, which regulates cellular amino acid
homeostasis at a global level [11]. Conversely, the
amino acid-mediated CLS extension was suppressed by
constitutive overexpression of GCN4 [11]. The fact that
leucine, isoleucine and valine were most important for
CLS points to a special status for the BCAAs during
aging. Accordingly, deletion of LEU3, a zinc finger
transcription factor involved in BCAAs synthesis,
dramatically increased CLS in the absence of amino
acid supplements.

Caenorhabditis elegans

The nematode Caenorhabditis elegans (C. elegans)
normally has a lifespan of about three weeks. The dauer
larva, however, lives several times longer. In addition,
several C. elegans mutants have increased longevity
[25].

Surprisingly, a large class of C. elegans mutants with
either genetic or RNA interference (RNAi1)-mediated
disruptions in genes essential for the function of
mitochondrial ETC — the so-called Mit mutants — are
long-lived (see [23] for review). The isp-/ mutant bears
a missense mutation in the Rieske iron sulphur protein
(ISP), a subunit of the mitochondrial complex III. This
mutant shows decreased mitochondrial respiration, low
oxygen consumption, and prolonged lifespan [26]. Also
the clk-1 mutants, with defective ubiquinone (UQy), the
electron acceptor in complex I-dependent respiration,
have increased lifespan [27]. The underlying cause for
the increased lifespan of clk-1 is a point of debate. In
clk-1 mutants, a ubiquinone intermediate (demetho-
xyubiquinone, DMQy) accumulates to functionally
replace ubiquinone, so that clk-1 worms respire almost
normally and show ATP levels unchanged or even
higher than those of the wild type strain, strongly
implying that their longevity is not the direct
consequence of decreased energy metabolism [27].
Others have proposed that, despite a specific defect in

complex I-dependent respiration and equal or increased
ROS production, mitochondria of c/k-I mutants
scavenge ROS more effectively than wild type due to
the presence of DMQ, leading to reduced oxidative
damage [28]. It has to be noticed that not all mutations
that disrupt the ETC in C. elegans lead to an increase in
lifespan. The gas-/ mutants are characterized by low
complex I-specific respiration, intense oxidative
damage in mitochondrial proteins and very short
lifespan [28]. The mev-1(kn-1) mutant, with a deletion
in a subunit of complex II has a shortened lifespan [29].
Moreover, deletion of phb-1 or phb-2 (coding for
mitochondrial prohibitins) has been found to influence
ATP levels, animal fat content, mitochondrial
proliferation and lifespan in a genetic background- and
age-specific manner [30].

Prolongevity effects of CR have been described in C.
elegans models. Up-regulated or unchanged metabolic
rate, respectively, have been initially described in long-
lived eat mutants (having a feeding defect) and calorie
restricted worms [31]. More recently, it has been
demonstrated that CR-mediated C. elegans lifespan
extension requires an increase in the respiration rate
(whole-body oxygen consumption) [32]. Accordingly,
specific restriction of intracellular glucose by 2-deoxy-
glucose treatment also extends lifespan in worms by
promoting mitochondrial respiration and an antioxidant
response [33].

The latest way to investigate long-lived worms
distinctive features is metabolite profiling, also called
metabolomics. By this approach, Fuchs and coworkers
[25] simultaneously studied different models of long-
lived worms, i.e., dauer larvae, several daf-2 mutants
[affecting the insulin/IGF-1 (IIS) signaling pathway],
and ife-2 mutants (with disrupted eukaryotic translation
initiation factor, e[F4E). The metabolic responses of all
these mutants were similar, allowing to identify a
“metabolic signature” of long-life in worms. The most
striking response was the up-regulation of the BCAAs
isoleucine, leucine and valine in long-lived daf-2 and
ife-2 mutants. The longevity prolonging effects of
DAF-2/IIS pathway suppression is mediated by the
activation of the FOXO transcription factor DAF-16. To
find out whether the metabolite changes were also
DAF-16 dependent, metabolic profiling of wild type
worms was compared to that of the daf-2 mutants, the
daf-16 mutants, or double-mutant worms. Of interest,
isoleucine, valine, and leucine changes showed the
classic pattern of DAF-16 dependence, making BCAAs
strong candidates for having a causal role in long life
[25]. A more recent metabolomic study brought further
evidence that BCAA levels are increased in a DAF-16-
dependent manner in long-living daf-2 mutants [34].
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Like other animals, C. elegans cannot synthesize
BCAAs, so that their levels depend on changes in
protein turnover or in BCAAs catabolism. Key
regulators of BCAA catabolic pathway are BCAA
aminotransferase (BCAT) and the branched-chain a-
ketoacid dehydrogenase (BCKDH) complex [35]. It has
been hypothesized that the down-regulation of genes
encoding for the BCKDH complex might be responsible
for the accumulation of BCAAs in long-lived worms
[25]. Altered transcript levels of various genes involved
in BCAA metabolism have been found in long-lived
mutants by other authors [34]. Although strong BCKDH
inactivation causes severe embryonic and larval
phenotypes in C. elegans and maple syrup urine disease
in humans, it has been suggested that partial down-
regulation of the BCKDH complex or subtle elevation
of BCAA levels by diet might confer long life [25].

Drosophila melanogaster

The fruit fly Drosophila melanogaster has a relatively
short lifespan and has been extensively used as a model
organism for aging studies. Early reports revealed
reduced mitochondrial number and mitochondrial
structural changes in the aged Drosophila [36]. The
expression levels of wvarious transcription factors
essential for mtDNA  replication, including
mitochondrial DNA transcription factor A (Tfam), are
decreased in old flies. Further, aged flies have reduced
transcripts of genes of the ETC and the TCA cycle and
reduced ATP synthesis [37]. Conversely, the genes
involved in oxidative phosphorylation are up-regulated
in long-lived Drosophila overexpressing a small
mitochondrial chaperone, Hsp22 [38].

Engineering fruit flies to overexpress a single-subunit
mitochondrial respiratory complex from yeast showed
tissue-specific effects on longevity. Overexpression of
the NADH-ubiquinone oxidoreductase (NDI1) of
Saccharomyces cerevisiae in the adipose tissue of the
fruit fly was found to exert a negative impact on
longevity, while neuronal NDI1 overexpression resulted
in life extension [39]. Ubiquitous expression of NDI1
significantly increased fly longevity [40], supporting the
idea that increased respiration can retard the Drosophila
aging process. Increased mitochondrial activity plays
also a causative role in CR-mediated extension of
Drosophila lifespan, since knock-down of either
complex I or IV subunits leads to diminished lifespan
extension under CR [41].

Mitochondria are critical in providing metabolites for
the de novo synthesis of nonessential amino acids.
Drosophila larvae grown in low yeast food, thus on
amino acid starvation, showed strongly reduced
mitochondrial abundance, mitochondrial respiratory

proteins and respiration activity in larval fat body, the
fly adipose/liver tissue [42]. This correlated with
reduced expression of enzymes involved in glutamine
metabolism [42], strongly suggesting that the amino
acid metabolism is coordinated with mitochondrial
abundance and activity. The Drosophila transcription
factor Delg was proposed to coordinate mitochondrial
functions according to nutrient availability, and to
adjust the synthesis of nonessential amino acids to the
uptake of essential amino acids [42].

Mus musculus

Despite the interest of results obtained in lower
organisms, use of mammalian models, such as mice, is
likely to be more relevant for understanding the aging-
related processes that occur in humans. Naturally long-
lived mouse mutants and various genetically altered
mice with extended lifespan have been studied [43]. A
body of evidence indicated the GH/IGF-1 axis as a
major contributor to longevity effects in mice. Further
evidence implicated increased capacity to resist
oxidative damage in mice survival [43], particularly
thanks to studies on p66(Shc), a crucial regulator of
ROS levels whose deletion in mice prolongs lifespan
(See Trinei et al. [44] for recent review). Efficient
renewal of functional mitochondria is known to reduce

mitochondrial ROS production [7]. Interestingly,
mutations affecting GH/IGF-1 signaling induce
mitochondrial gene expression and oxidative

metabolism in mice [45-46].

The life-extending effects of the CR regimen in rodents
are well known [7]. We first demonstrated that CR, by
feeding mice on alternate days, promotes mitochondrial
renewal in several tissues, mainly by increasing the
expression of peroxisome proliferator-activated receptor
vy coactivator 1o (PGC-10) [8], a powerful regulator of
mitochondrial biogenesis and of the reactive ROS
defense system [47]. CR also induced the expression of
endothelial nitric oxide synthase (eNOS) and SIRTI,
the mammalian orthologue of the yeast Sir2 gene linked
to lifespan extension, enhanced mitochondrial
biogenesis and decreased ROS production [8]. Our
observations have been subsequently confirmed by
others [48, 49], also in humans [50]. The CR effects
were blunted in eNOS-null mutant (eNOS™) mice [8].
Interestingly, ~ eNOS™  mice have defective
mitochondrial biogenesis, reduced SIRT1 expression [8,
51, 52] and display metabolic derangements, age-related
diseases and shortened lifespan [53, 54].

The relevance of boosting mitochondrial function to
preserve mammalian health and longevity has been
recently proved by Safdar et al. [55]. In a strain of mice
prone to mtDNA damage and with reduced lifespan
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(i.e., the mtDNA mutator mouse, designated the PolG
mouse, a model of progeroid aging that exhibits
elevated mtDNA point mutations), a regime of
endurance training induced mitochondrial biogenesis,
increased mitochondrial respiratory capacity, and
prevented mtDNA damage. Furthermore, the trained
mice no longer exhibited premature mortality or other
symptoms associated with accellerated aging, including
fat loss, muscle loss, anemia, and graying fur.

Three of the seven mammalian sirtuins (SIRT3, SIRT4,
and SIRTS) are targeted to mitochondria and can their
expression be differently modulated by the CR regimen
[56-58]. Studies in SIRT3 and SIRTS mutant mice, that
are prone to age-related disorders [59] have recently
provided unexpected links among CR-related
mitochondrial changes and amino acid metabolism (see
below).

Antiaging effects of dietary BCAA supplementation
in mice

In search for CR-mimetic compounds, we recently
investigated the effects of a balanced amino acid
mixture with a high content of branched-chain and other
essential amino acids (BCAA-enriched mixture,
BCAAem; % composition: leucine 31.3, lysine 16.2,
isoleucine 15.6, valine 15.6, threonine 8.8, cysteine 3.8,
histidine 3.8, phenylalanine 2.5, methionine 1.3,
tyrosine 0.7, tryptophan 0.5) which had been found to
improve age-related disorders in animals and humans
(see below). We demonstrated that BCAAem oral
supplementation (1.5 mg/g body weight/day beginning
at 9 months) increases the average, but not maximal
lifespan of male mice [12]. Along with increased
survival, BCAAem-supplemented middle-aged (16
months) mice showed up-regulated PGC-1a and SIRT1
expression and enhanced mitochondrial biogenesis and
function in cardiac and skeletal muscles but not in
adipose tissue or liver. Further, the BCAAem preserved
muscle fiber size and improved physical endurance and
motor coordination in middle-aged mice [12]. Notably,
BCAAem was unable to affect muscle mitochondrial
density and function and failed to extend average
lifespan in eNOS™ mice. The prolonged survival due to
BCAAem supplementation was also associated with
increased expression of genes involved in antioxidant
defense and marked reduction of ROS production in
cardiac and skeletal muscles of wild type but not eNOS’
" mice. Of interest, BCAAem-mediated effects were
even more remarkable in long-term exercise-trained
(running 30 to 60 min 5 days/week for 4 weeks) middle-
aged mice. In young animals (4-6 months old), the
mixture was ineffective.

Which mechanisms are involved in the observed
BCAAem effects? mTOR complex 1 (mTORCI,;
mammalian TOR [mTOR] in complex with raptor) is a
key regulator of protein synthesis and cell growth in
response to nutrient amino acids. BCAAs increase
mTORC1 activity [60], which favours cell oxidative
capacity [61] and PGC-1a-mediated mitochondrial gene
expression [62]. We found that BCAAem activated
mTOR and its downstream signals and that the

mTORC1 inhibitor rapamycin antagonized the
mitochondrial biogenesis effects of BCAAem in
cardiomyocytes [12]. We also found evidence

suggesting that BCAAem-activated mTOR signaling
might enhance mitochondrial biogenesis partly through
increasing the NO generating system. Moreover, eNOS
gene silencing decreased the mTOR activation by
BCAAem in cells and BCAAem supplementation was
unable to activate mTOR signaling in eNOS™ mice
[12]. Thus, a positive feedback mechanism between
eNOS and mTOR could promote the BCAAem effects.
How amino acids influence and activate mTORC1 was
not been well delineated until a most recent study,
which established inositol polyphosphate multikinase
(IPMK) as a key determinant of leucine- or total amino
acid-mediated signaling to mTORCI1 in mice [63].
Amino acid-stimulated mTOR activation occurs
independently of IPMK’s catalytic activity. Instead,
IPMK acts by stabilizing the mTOR-raptor association
in the mTORC1 complex [63].

We did not specifically investigate the contribution of
enhanced mTOR signaling in BCAAem-mediated
increase of mice average survival. Interestingly,
selective knockout of either mTOR or the mTORCI
component raptor in skeletal muscle decreased
oxidative capacity, mitochondrial gene expression, and
survival [64, 65]. However, reduced TOR signaling is
thought to be a putative mechanism mediating lifespan
extension by CR (see [66] for review). Mice with
deletion of the mTOR substrate ribosomal S6 protein
kinase (S6K) have increased lifespan [67]. Further,
chronic rapamycin treatment in mice exerts
prolongevity effects [68], yet this finding does not
conclusively prove that mTOR inhibition is the
mechanism involved in rapamycin-mediated life
extension. Notably, rapamycin was unable to increase
Drosophila lifespan [69]. Moreover, mTOR inhibition-
mediated lifespan extension displays a gender effect
clearly distinguishable from CR. Unlike CR, rapamycin
is more efficacious in female than in male mice [68],
while S6K deletion increases lifespan only in females
but not in males [67]. The gender-specific pattern of
mTOR inhibition in aged individuals remains a problem
to be solved [70]. Again, the role of mTOR in CR is
tissue specific. CR reduces mTOR signaling in liver
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[71] but increases it in WAT and heart [72]. Further, the
CR-mediated increase of mitochondrial function in
different tissues [8] is not consistent with reduced
mTOR signaling. In addition, recent evidence indicates
that mTOR signaling is down- or up-regulated
depending of age and the type of CR regimen [73]. All
in all, the role of mTOR in CR mechanisms is complex
and not yet conclusively clarified [74]. With this in
mind, more work needs to be done to address the
possible contribution of mTOR in BCAAem
prolongevity effects.

Why does the BCAAem promote mitochondrial
biogenesis in metabolically active tissues and what is
the relationship between this effect and the CR-induced
changes in mitochondrial function? Conclusive answers
are not available yet, but a sound hypothesis can be put
forward. First, amino acids are important precursors of
TCA cycle components (Fig. 1). Secondly, amino acid

Alanine

catabolism leads to production of ammonia, which is
metabolized via the urea cycle, whose first two steps
occurr in the mitochondrial matrix (Fig. 2). Thus, the
amino acid supplementation could induce mitochondrial
biogenesis to promote catabolism of amino acid
themselves. Interestingly, Nakagawa et al.  [58]
demonstrated that during long-term CR or a high
protein diet, the mitochondrial SIRT5 deacetylates and
activates carbamoyl phosphate synthase 1, the first and
regulated step of urea cycle. Accordingly, Hallows et al.
[59] have more recently demonstrated that the
mitochondrial deacetylase SIRT3 directly regulates
ornithine transcarbamoylase activity, the second step of
the urea cycle, thus promoting the amino acid
catabolism during CR. These findings suggest that the
amino acid-induced mitochondrial biogenesis might be
functional to amino acid catabolism and that amino
acids might be, either directly or indirectly, related to
the effects of CR on survival of mammals.
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Figure 1. Amino acids are degraded to compounds that can be metabolized to CO, and H,0, or used in gluconeogenesis. Indeed the
oxidative degradation of amino acids produces 10 — 15% of total metabolic energy in animals. The standard amino acids are degraded
to one among the seven metabolic intermediates (pyruvate, a-ketoglutarate, succinyl-CoA, fumarate, oxaloacetate, acetyl-CoA or
acetoacetate). Thus, amino acids may be divided into two groups, on the basis of their catabolic pathways: 1) gluconeogenic amino
acids, which are catabolized to pyruvate, a-ketoglutarate, succinyl-CoA, fumarate or oxaloacetate, and are glucose precursors; 2)
ketogenic amino acids, which are catabolized to acetyl-CoA or acetoacetate, and, thus, may be transformed into fatty acids or ketone
bodies. Some amino acids are precursors both of carbohydrates and ketone bodies. Because mammals have no metabolic pathway
which allows a net transformation of acetyl-CoA or acetoacetate to gluconeogenic precursors, no net synthesis of carbohydrates is
possible from lysine and leucine, exclusively ketogenic amino acids. BCAAs, branched-chain amino acids.
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Health effects of BCAAs in mammals

For decades, dietary supplementation with amino acids
has been proposed in various physiological or
pathological conditions. Based on the recent progress in
our understanding of the BCAA cell signaling and in
vivo metabolism, and on accumulating experimental
results, the concept that dietary BCAA supplementation
might have health effects is now experiencing a major
revival (see [75] for review). Latest evidence from basic
and clinical studies might extend the use of specific
amino acid mixtures for the prevention and/or treatment
of diverse human disorders.

Animal studies: an update

The effects of BCAA intake have been investigated in a
number of disease models, including obesity and
metabolic disorders, liver disease, impaired immunity,
muscle atrophy, cancer, and a variety of injury
(postoperative, trauma, burn, and sepsis) [75]. Here we
will briefly revise the most recent developments of this
topic.

First of all, BCAAs appear to have unique obesity-
related effects. BCAAs, and in particular leucine,
increase fat leptin secretion [76], decrease food intake
and body weight via mTOR signaling [77], and improve
muscle glucose uptake and whole body glucose
metabolism [78]. However, obese rodents (ob/ob mice
and fa/fa Zucker rats) exhibit elevated plasma BCAA
levels [78]. To explore loss of catabolic capacity as a
potential contributor to the obesity-related rises in
BCAA:s, She et al. [78] assessed possible changes in the
first two enzymatic steps of BCAA catabolism, namely,
BCAT and the BCKDH complex. They found tissue-
specific alterations in BCAA catabolic enzymes,
involving a decline of BCKDH Ela in liver and
adipose tissue, but not in muscle, possibly contributing
to the rise in plasma BCAAs in obesity. In a separate
series of experiments, the same investigators generated
mice in which the gene encoding the BCAT2 isozyme
was disrupted [79]. They found that rises in plasma
BCAAs were associated with improvements in glucose
tolerance and resistance to diet-induced obesity in these
animals. The authors proposed that increased protein
synthesis and degradation would contribute directly to
increased energy expenditure in mice lacking peripheral
BCAA metabolism. These findings suggest that the
increased BCAA levels in obese animals might be
compensatory to obesogenic stimuli.

Actually, controversy exists about the effects of
increasing dietary leucine on insulin sensitivity. For
example, Zhang and colleagues have demonstrated that
an increased leucine dietary intake improves the whole-

body glucose metabolism in mice maintained on a high-
fat diet [80]. By contrast, in a recent study, leucine
deprivation was observed to increase whole-body
insulin sensitivity [81]. Leucine deprivation improved
hepatic insulin sensitivity by activating general control
nonderepressible GCN2, decreasing mTOR/S6K1 and
activating AMP-activated protein kinase (AMPK)
signaling. Again, leucine deprivation improved insulin
sensitivity under insulin-resistant conditions [81].
Noteworthy, Noguchi et al. [82] designed a novel diet
with an elevated ratio of essential to nonessential amino
acids (high-E/N diet). Dietary proteins in the high-E/N
diet were partially replaced with a mixture of free
ketogenic essential amino acids (leucine, isoleucine,
valine, lysine and threonine) without altering dietary
carbohydrate and fat content. This dietary amino acid
manipulation improved glucose tolerance, decreased
lipogenesis and prevented hepatic steatosis in diet-
induced obese mice, and was suggested as a novel
preventive and therapeutic approach for non-alcoholic
fatty liver disease. Accordingly, in a recent study, rats
orally administered an amino acid mixture (containing
cysteine, methionine, valine, isoleucine and different
concentrations of leucine) together with a high-glucose
solution, have shown an improved glucose tolerance as
compared to non-supplemented animals [83]. Overall,
these results would suggest that specific mixtures of
amino acids, rather than a single amino acid
supplement, may be more efficacious in lowering the
blood glucose response to a glucose challenge.

A promising area of preclinical research is regarding the
effects of BCAAs on skeletal muscle atrophy. We
observed that BCAAem intake preserves muscle fiber
size and improved physical endurance and motor
coordination in middle-aged mice [12]. Accordingly, an
amino acid mixture with BCAAem composition has
been found to improve sarcopenia, i.e., the aging-
associated loss of muscle mass [84], an effect possibly
due to the recovery of the altered Akt/mTOR signaling
in muscles of aged rats [85]. Correspondingly, other
groups have recently reported that BCAAs decrease
protein breakdown and protect against dexamethasone-
induced soleus muscle atrophy in rats [86]. BCAAem-
mediated improvement of muscle functional capacity
was further enhanced by exercise training [12]. Exercise
promotes longevity and is the best intervention to
alleviate and reverse sarcopenia and frailty in the
elderly [87]. It has been reported that concurrent intake
of antioxidants (vitamin C and E) abolished some
health-promoting effects of exercise in humans, by
preventing the induction of the ROS sensors PGC-1a/
and consequent activation of ROS defense [88]. Our
results suggest that the BCAAem could meet the need
for a safe PGC-1a inducer in sarcopenia treatment [87]
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and a valid substitute for dietary supplementation with
antioxidants in active elderly people.

The BCAAs leucine and valine have been also reported
to prevent muscle atrophy in mice bearing a cachexia-
inducing tumor [89]. Given the possible benefits of
BCAAs in cancer patients, it would be of relevance to
determine their effects on neoplastic cell growth.
Dietary amino acids, incluning BCAAs, have been used
in cancer models with mixed results [90-92]. Anyway,
convincing data demonstrate that BCAA treatment does
not directly potentiate neoplastic cell growth and may
actually diminish neoplastic cell proliferation at
supraphysiological  concentrations [93].  Further
investigation is needed to examine the effects of amino
acid mixtures with different BCAA composition on
normal and tumor cell proliferation.

Additional observations deal with the capability of the
BCAAem formula to ameliorate myocardial
dysfunction in diabetic rats [94] and to maintain the
health of kidney in aged rats [95]. In particular, when
administered orally at the beginning of rat senescence,
BCAAem induces eNOS and vascular endothelial
growth factor in the kidney, thus increasing
vascularization and reducing kidney fibrosis. Improved
vascularization and increased collagen deposition and
fibroblast proliferation seem also to be involved in the
cutaneous wound healing obtained with topical
application of BCAAs and other essential amino acids
in aged rats [96].

Again, BCAAs compete for large, neutral amino acid
transport at the blood—brain barrier and can influence
brain neurotrasmitter synthesis [97]. Experimental
studies show that BCAAs have favourable effects on
cognitive functions. BCAA supplementation has been
reported to improve cognitive performance in active
dogs, with greater benefit to senior dogs [98]. BCAA
transamination plays an essential role in the synthesis
of glutamate and subsequently of GABA. Cole et al.
[99] evaluated mice subjected to traumatic brain injury,
and found a significant reduction in BCAA
concentration and neurotransmitter changes in the
hippocampus. Dietary delivery of BCAAs to brain-
injured mice restored hippocampal BCAA levels,
synaptic glutamate and GABA pools and net synaptic
efficacy, and eradicated injury-induced cognitive
impairment [99].

Human studies: promising evidence

Emerging metabolomic technologies make it feasible to
investigate the metabolic status of the whole human
organism in high-throughput applications. Newgard et
al. [100] studied subjects that become obese on a typical

Western diet (with high fat and protein content). By
metabolic profiling, they identified a cluster of obesity-
related changes in specific amino acids that was
associated with insulin resistance. In particular,
circulating levels of the BCAAs were higher in obese
compared to lean subjects [100]. Obesity was also
associated with decreases in bioavailable IGF-1. The
authors suggested that, in the context of overnutrition
and low IGF-1 levels, circulating BCAAs rise, leading
to an overload of BCAA catabolism that contributes to
insulin resistance in obese subjects.

A more recent nested case-control study in the
Framingham Offspring Study has investigated whether
metabolite profiles could predict the development of
type 2 diabetes [101]. Fasting concentrations of BCAAs
and of two aromatic amino acids, phenylalanine and
tyrosine, were found elevated up to 12 years before the
onset of diabetes in high risk subjects as compared to
propensity-matched control subjects. The strongest risk
of future diabetes was associated to a combination of
three amino acids, namely isoleucine, phenylalanine and
tyrosine. In a more heterogeneous study sample, obtained
by looking at a random set of controls from the
Framingham cohort (having lower baseline body mass
index and fasting glucose values compared to the case-
control sample), the relative risk associated with elevated
amino acids, though still significant, was attenuated
[101]. The authors recognize that contrasting data exist
on BCAA effects on glucose homeostasis and that further
investigation is necessary to assess whether amino acids
may be markers or effectors of insulin resistance.

On the other hand, sparse studies in wrestlers and in
obese subjects have shown that BCAA supplementation
exerts beneficial effects on body weight and body fat
[102]. Most recently, the population-based International
Study of Macro-/Micronutrients and Blood Pressure
(INTERMAP) provided a unique opportunity to
evaluate the effects of dietary BCAAs across different
cultures. This high-quality study demonsrated that a
higher BCAA intake is associated with a lower
prevalence of being overweight or obese in middle-aged
individuals from East Asian and Western countries
[102]. In this line, Solerte et al. studied the effects of a
balanced amino acid formula corresponding to the
BCAAem in a long-term randomized study of elderly
subjects with type 2 diabetes and found improved
metabolic control (i.e., reduced glycated hemoglobin
[HbAlc] ) and insulin sensitivity [103]. Noteworthy,
BCAAs effectively reduce insulin resistance in patients
with chronic viral liver disease [104], and the health
effects of BCAA supplementation in patients affected
by liver disorders, including cirrhosis, was demons-
trated in several reports [105-107].
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A variety of amino acid mixtures have been used to
restore the protein content of defective tissues,
especially of skeletal muscles, in aged subjects [108,
109]. Dillon et al. [108] reported that 3-month
supplementation with essential amino acids increases
IGF-1 muscle levels and lean body mass in aged
women, without affecting kidney function. The acute
anabolic response to this supplementation (increased
muscle protein fractional synthesis rate) was maintained
over time, suggesting the possibility to improve skeletal
muscle trophism in long-term treatment [108]. Various
BCAA dietary supplements have been reported to
reduce sarcopenia in elderly subjects. In a randomized
trial involving 41 subjects with sarcopenia aged 66 to
84 years, intake of the BCAAem formula increased
muscle mass, reduced tumor necrosis factor-o, and
improved insulin sensitivity [110]. As a result, leucine-
enriched balanced amino acid supplements are now
considered as part of the nutritional recommendations
for the management of sarcopenia [111].

Amino acid supplementation also inhibits inflammatory
markers in chronic heart failure patients and might re-
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present a promising therapeutic approach, particularly
in the presence of the so-called wasting syndrome
[112]. Accordingly, supplementation with the BCAAem
formula improves exercise capacities in elderly subjects
affected by chronic heart failure [113]. The latter effect
was detectable also in aged individuals without evident
disorders [114].

Certainly of interest are the recent reports that
BCAAem intake reduces by 30% the incidence of
infections acquired in geriatric long-term rehabilitation
centers [115], increases the serum albumin and total
proteins in hemodialysis patients, with reduction of
inflammation markers and correction of anemia [116],
and improves gas exchange and cognitive function
score in patients with severe chronic obstructive
pulmonary disease [117]. Equally important, in keeping
with intriguing experimental data [99], parenteral
supplementation of BCAAs was shown to enhance the
cognitive recovery of patients with traumatic brain
injury [118], even when on a vegetative or minimally
conscious state [119].

Cognitive function decline
(traumatic brain injury, vegetative
or minimally conscious state)

COPD
Infections

Heart failure

Figure 3. Possible health effects of amino acid mixtures in humans. Accurate clinical trials enrolling larger number of
patients are necessary to confirm the safety and efficacy of BCAA/amino acid supplementation in geriatric patients.

COPD, chronic obstructive pulmonary disease
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Conclusions and perspectives

A body of recent evidence suggest that amino acids, and
in particular BCAAs, behave as evolutionary conserved
modulators of lifespan of different organisms, ranging
from yeast to mammals. Our data demonstrate that oral
intake of a BCAA-enriched balanced amino acid
mixture improves motor coordination and endurance
and promotes longevity of male mice [12]. The key role
of BCAAem on mitochondrial biogenesis, cell energy
metabolism, and ROS scavenging systems, through the
modulation of the mTOR/eNOS pathways, may explain
most of the beneficial actions of this supplementation.
Importantly, among the many genetic and
pharmacological treatments that extend longevity in
diverse animal models, BCAA supplementation has the
add-on value to prolong animal health and functional
capacities. Accordingly, likewise exercise, BCAAem
does not affect maximum lifespan, but increases the
median lifespan, an indicator that specific diseases have
been prevented. Geriatricians have long recognized that
disability, frailty, and age-related disease onset are
critical issues that need to be addressed in older
populations. Hence, the concept of healthspan has
emerged as a key end point for geriatric studies to
translate experimental findings into realistic clinical
interventions [120]. A number of preclinical and clinical
reports, here reviewed, supports the use of dietary
supplementation with balanced amino acid formulas
containing BCAAs to prevent disability and prolong
healthy life expectancy of elderly subjects (see
summary in Fig. 3).

A broad range of questions await answers. The first
point to be clarified is the role that specific amino acid
signatures can play, directly or indirectly, in the CR
effects on healthspan. Next, taken into account the
contradictory  results that arise from leucine
administration, there is need to investigate which amino
acid (or specific amino acid combination) is required for
the beneficial effects seen in mammals. Not last in
importance, large, randomized clinical trials are
necessary to assess the safety and efficacy of
BCAA/amino acid supplementation for the prevention
and treatment of the disabling consequences of energy
depletion in the elderly.
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