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Research Perspective

Besides Huntington’s disease, does brain-type creatine kinase play a
role in other forms of hearing impairment resulting from a common
pathological cause?
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Abstract: Hearing impairment following cochlear damage due to noise trauma, ototoxicity caused by aminoglycoside
antibiotics, or age-related cochlear degeneration was linked to a common pathogenesis involving the formation of reactive
oxygen species (ROS). Cochleae are more vulnerable to oxidative stress than other organs because of the high metabolic
demands of their mechanosensory hair cells in response to sound stimulation. We recently showed that patients and mice
with Huntington’s disease (HD) have hearing impairment and that the dysregulated phosphocreatine (PCr)-creatine kinase
(CK) system may account for this auditory dysfunction. Given the importance of noninvasive biomarkers and the easy
access of hearing tests, the symptom of hearing loss in HD patients may serve as a useful clinical indicator of disease onset
and progression of HD. We also showed that dietary creatine supplementation rescued the impaired PCr-CK system and
improved the expression of cochlear brain-type creatine kinase (CKB) in HD mice, thereby restoring their hearing. Because
creatine is an antioxidant, we postulated that creatine might enhance expression of CKB by reducing oxidative stress. In
addition to HD-related hearing impairment, inferior CKB expression and/or an impaired PCr-CK system may also play an
important role in other hearing impairments caused by elevated levels of ROS. Most importantly, dietary supplements may
be beneficial to patients with these hearing deficiencies.

INTRODUCTION

polyglutamine (polyQ)-expanded mutant Huntingtin
Huntington’s disease (HD) is an autosomal dominant protein (Htt) forms nuclear and neutrophil aggregates
neurodegenerative disorder with onset usually in middle and preferentially affects the striatum and cerebral
age. Clinical features of HD include uncontrollable cortex. In addition to altered functions in the central
motor movements, cognitive impairment, and nervous system, the expression of mutant Htt was also
psychiatric symptoms [1]. Although the causative gene found in peripheral tissues [2-4], and was directly
(Huntingtin, HTT) of HD is ubiquitously expressed, the linked to local tissue defects [5,6]. We recently reported
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that patients and mice with HD have hearing impairment
[7], for which an association between dysregulated brain-
type creatine kinase (CKB) and impaired hearing in HD
mice was demonstrated. Expression levels of CKB in the
cochlea of two different HD mice models (R6/2 and
Hdh(CAG)]SO) were significantly lower than that of WT
mice, suggesting that the impairment of CKB in the
cochlea is likely an authentic defect of HD. Interestingly,
dietary creatine supplements to HD mice not only
rescued the expression of cochlear CKB but also restored
the hearing of HD mice (Figure 1) [7]. It would be of
great interest in the future to evaluate whether hearing
loss of HD patients can be treated by dietary creatine
supplements.
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Our findings indicate that the impairment of CKB may
account for the cochlear energy deficiency which is
likely a primary cause of the observed hearing loss in
HD mice [7]. Because the hearing system involves
high-energy-demanding metabolic processes, CKB is
likely to play an important role in maintaining normal
hearing, as well as in pathological hearing impairments
caused by energy deficiencies in the cochlea. In this
research perspective, we suggest that hearing loss may
serve as a biomarker to monitor the progression of HD
and discuss the potential roles of CKB and the
phosphocreatine (PCr)-creatine kinase (CK) system in
neurodegenerative disorders associated with energy
deficits.
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Figure 1. Proposed model for the pathogenesis of hearing impairment in Huntington’s disease (HD). Mitochondrial
creatine kinase (CKMT1) phosphorylates creatine (Cr) and converts it to phosphocreatine (PCr), while brain-type creatine kinase
(CKB) regenerates ATP from PCr. Because the stereocilia contain no mitochondria, the PCr-CK system plays a critical role in hair
bundles of hair cells. Expression of mutant Huntingtin (Htt) in hair cells impairs the functioning of mitochondria, suppresses the
expression of CKB, and elevates levels of reactive oxygen species (ROS). Creatine supplementation in HD mice ameliorates the
reduced expression of CKB via an unidentified pathway, and subsequently improves the hearing impairment in HD mice.
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CKB and HD

It is well known that CK regulates ATP regeneration
and energy homeostasis by catalyzing the reversible
transfer of high-energy phosphate from phosphocreatine
to ADP [8-11]. Tissues such as the brain, skeletal and
cardiac muscles, retinas, and spermatozoa express large
amounts of CK to produce adequate energy stores for
dynamic energy requirements [12-17]. It is important to
note that the level of CKB was lower in the cochlea of
HD mice, where aggregations of mutant Htt (NlIs) were
also present [7]. The effect of Nlls on the structure and
function of the cochlea and the interplay between Nlls
and CKB levels are currently unknown and are worthy
of further evaluation in the future. Most importantly, we
found that hearing impairment was closely associated
with motor deficits, a major symptom of HD patients
[7]. To date, reliable biomarkers of HD which can be
used to predict the onset, monitor progression, and/or
evaluate the efficacy of therapeutic treatment are in high
demand. The progression of HD is currently evaluated
using the Unified Huntington's Disease Rating Scale
(UHDRS) in clinics [18,19]. Nonetheless, the UHDRS
tends to be subjective, and its sensitivity to disease
progression is low [20]. Tremendous efforts have been
devoted to searching for precise and reliable biomarkers
using various approaches including neuroimaging and
biochemical analyses [21-31]. Considering that hearing
tests are generally accessible to HD patients in local
clinics, we reasoned that hearing loss may be
considered a new feature of HD patients in clinics as
well as a potential biomarker for assessing therapeutic
interventions for HD.

Besides the inferior expression of CKB, alterations in
mitochondrial functions were extensively explored in
HD. Well-documented mitochondrial abnormalities
including dysregulation of a mitochondrial biogenesis
co-activator (peroxisome proliferator-activated receptor
gamma coactivator-la, PGC-lo) [32], abnormal
calcium homeostasis [33], impaired mitochondrial
trafficking [34,35], and ATP depletion [36] were
reported in animals with HD. These findings suggest
that energy deficits are critical for the pathogenesis of
HD. Oxidation of CKB, which leads to its reduced
activity, was also reported in the brain of rodents and
humans with HD [37,38]. Interestingly, decreased levels
of CKB in the blood buffy coat fraction were found to
be associated with presymptomatic and manifesting HD
patients [39], suggesting a potential application of CKB
as a biomarker to predict the onset and monitor the
progression of HD. It is important to note that
downregulation of CKB was also found in numerous
neurodegenerative disorders such as Alzheimer's
disease, Pick's disease, and diffuse Lewy body disease

[40,41]. Given the importance of CKB in maintaining
energy homeostasis and appropriate neuronal functions,
it is worth evaluating whether the level of CKB in white
blood cells can serve as a reliable biomarker to assess
the progression of neurodegenerative diseases
(including HD) in which the level of CKB is reduced in
the affected brain region(s).

CKB in the cochlea

Mechanoelectrical transduction of cochlear hair cells in
response to acoustic stimuli involves specialized actin-
cored microvilli called stereocilia, the deflection of
which leads to potassium influx from the endolymph,
depolarizes hair cells, and in turn opens voltage-gated
calcium channels in cell membranes. The influx of
calcium triggers neurotransmitter release from the basal
end of the cell into the auditory nerve endings and fires
the fiber. This sound reception process in the cochlea
requires energy-intense processes to adequately prime
the hair bundle movement, for homeostatic calcium
regulation, and for potassium recycling to repeat the
cycle [42,43]. Because hair bundles contain no
mitochondria, an efficient energy supply mechanism to
maintain a sufficient ATP level for immense energy
consumption processes in hair bundles [44], such as
slow and fast adaptation [45], is crucial. The PCr-CK
system thus plays a critical role in managing high-
energy demands in the cochlea as demonstrated using a
CKB-knockout mouse model that exhibited preferential
high-tone hearing loss [44].

Besides cochlear hair cells, CKB is also localized in the
inner ear spiral ligament, where several ion transport
enzymes such as Na, K-ATPase, and carbonic
anhydrase are expressed to facilitate potassium ion
cycling back to the endolymph [46-48]. Although the
role of CKB in the cochlear lateral wall remains
unclear, it is reasonable to propose that the PCr-CK
system may also function to shuttle high-energy
phosphate to replenish ATP at these intracellular sites
where ATPase hydrolyzes ATP to mediate specialized
energy demands. It was noted that strial atrophy in aged
rodent cochleae is associated with an abnormal
expression profile of CKB [46], suggesting an energy-
supplying role of CKB during disturbed metabolic
demands in strial atrophy.

the

ROS-related hearing impairment and

antioxidative role of creatine

Age-related sensorineural hearing loss (SNHL) is the
most common sensory deficit in the elderly population
[49] and is closely associated with accumulated
oxidative damage caused by ROS [50-53]. As discussed
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above, cochleac possess metabolically active tissues
that tend to produce ROS through mitochondrial
oxidation. Normally, ROS produced by mitochondria
during physiological conditions are scavenged by
endogenous antioxidant mechanisms [54-56]. However,
when excess ROS following noise overstimulation or
ototoxic drug insults overwhelm a cell’s natural
antioxidant defenses, elevated oxidative stress is known
to contribute to several types of hearing impairment,
including age-related, noise-induced, and ototoxic drug-
induced SNHL [43,53]. The accumulation of ROS leads
to genetic and cellular alterations which cause cellular
dysfunctions such as lipid peroxidation, polysaccharide
depolymerization, nucleic acid disruption, oxidation of
sulthydryl groups, and enzyme inactivation [57],
consequently leading to  permanent cochlear
degeneration [58-60]. Moreover, a decline in the
mitochondrial respiratory function and an increase in
the mitochondrial ROS production may render cells
more  susceptible to  apoptosis.  Conversely,
accumulating evidence demonstrated that antioxidants
and free radical scavengers may serve as effective
therapeutic agents to block ROS-related activation of
death mechanisms in multiple systems, including the
auditory system [43,61-65].

Creatine is a nitrogenous organic acid which is known
to increase muscle mass and performance, prevent
disease-induced muscle atrophy, and facilitate
supplying energy to cells under a reversible catalyzing
reaction with CK. Besides its role in energy
replenishment, creatine also exerts a strong antioxidant
effect by reducing the intra-mitochondrial production of
ROS, as well as elevating and preserving the
mitochondrial membrane potential [66]. In a noise-
induced hearing loss animal model, creatine treatment
was shown to significantly attenuate the resultant
auditory threshold shifts [67], suggesting that both the
maintenance of ATP levels and the scavenging of free
radicals mediated by creatine are essential for hearing
protection from such oxidative damage. Since oxidative
damage caused by ROS has become a common
pathological cause involved in several types of hearing
loss, creatine supplements are believed to improve the
mitochondrial antioxidant defense system and maintain
optimal energy homeostasis. Further experiments are
needed to further explore the pleiotropic roles of
dietary-supplemented creatine in the auditory system.

Conclusions

Impaired energy homeostasis recently emerged as an
important player in a wide variety of neurodegenerative
diseases. Our earlier findings of the functional roles of
CKB and the PCr-CK system in hearing loss during HD

progression strengthen the importance of energy deficits
in HD pathogenesis. Potential applications of dietary
creatine supplements and approaches that enhance the
expression of CKB for degenerative diseases (including
HD) with energy deficiency and SNHL warrant further
investigations.
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