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In the last week paper in Science Transl Med, Francis 

Collins, Dimitri Krainc, Kan Cao and co-workers 

described that rapamycin reverses cellular phenotypes 

in Hutchinson-Gilford progeria syndrome (HGPS) cells 

[1]. Is it a co-incidence that rapamycin also suppresses 

senescence in regular (non-HGPS) mammalian cells 

[2]? 

 

Clearance of progerin by rapamycin 

 

Hutchinson–Gilford progeria syndrome (HGPS) is a 

rare genetic disorder characterized by some features 

reminiscent of aging, including atherosclerosis and 

alopecia [3-6]. The median life span is 13 years, and the 

main cause of death is myocardial infarction and stroke. 

Progeria is mainly caused by the abnormal 

accumulation of progerin, a mutant form of the nuclear 

envelope component lamin A [7, 8]. In cell culture, 

HGPS cells are prone to replicative senescence (Figure 

1) [9-12]. Accumulation of progerin causes nuclear 

abnormalities, mitotic abnormalities and accelerate 

telomere shortening. This causes DNA damage 

response, p53 induction and cell cycle arrest [11, 13-

16]. After a number of cell divisions in culture, cells 

stop proliferating (replicative senescence). 

 

Very recently Cao et al described that rapamycin 

stimulates clearance of progerin and therefore prevents 
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nuclear abnormalities and delays replicative senescence 

[1]. Rapamycin eliminates the cause of the 

abnormalities and therefore is expected to be an 

effective treatment in progeria [1]. In addition to this 

strong rationale [1], there is one additional indication 

for rapamycin, regardless of progerin clearance, namely 

suppression of geroconversion (conversion from 

quiescence to senescence) by rapamycin [2,17-19]. 

 

 
 

 

 

 

Prevention of geroconversion by rapamycin 

 

Normal human cells undergo replicative senescence due 

to telomere shortening, which causes cell cycle arrest 

[9, 20-22]. But cell cycle arrest is not yet senescence 

[23, 19]. In the young organism, post-mitotic cells are 

not senescent.  Such cells must undergo geroconversion 
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Abstract: A recent discovery that rapamycin suppresses a pro-senescent phenotype in progeric cells not only suggests a 

non-toxic therapy for progeria but also implies its similarity with normal aging. For one, rapamycin is also known to 

suppress aging of regular human cells. Here I discuss four potential scenarios, comparing progeria with both normal 

and accelerated aging. This reveals further indications of rapamycin both for accelerated aging in obese and for 

progeria. 

 

 
 

 
 
 

 

 

 

 www.impactaging.com                               AGING, July 2011 Vol. 3. No 7 

 
 
www.impactaging.com               685                                             AGING, July 2011, Vol.3 No.7 

Figure 1. Progerin-induced replicative limit in progeric cells 

Rapamycin decreases levels of progerin and thus prevents 

telomere erosion and cell cycle arrest 
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during lifespan. In cell culture, senescence is 

characterized by large flat cell morphology 

(hypertrophy), beta-Gal staining, hyper-secretory 

phenotype, activated DNA-damage response (even in 

the absence of DNA damage), resistance to signals 

(such as insulin), elevated cyclins with inappropriate 

drive into S-phase, and loss of proliferative potential 

(PP) [17, 24-42, 17]. Loss of PP, a convenient marker in 

cell culture, means that the cells cannot resume 

proliferation even when they are released from arrest, 

for example, by switching p21 off  [2, 43]. Senescent 

phenotype (including loss of PP) can be linked to hyper-

active growth-promoting and nutrient-sensing pathways 

such as mTOR (Target of Rapamycin). In proliferating 

cells, growth factors (and nutrients) activate cell mass 

growth, which is balanced by division. When the cell 

cycle is arrested, then activated mTOR drives the 

senescent morphology [2, 17]. Over-activation of the 

mTOR pathway causes hyper-activation and exhaustion 

of stem cells too [44- 46]. 

 

In replicative senescence of normal human (not rodent) 

cells, telomere erosion during 20-70 division cycles 

causes DDR and cell cycle arrest. Telomere erosion is a 

very peculiar (and time consuming) method to achieve 

cell cycle arrest. One can accelerate the process. Cell 

cycle can be directly arrested by DNA damaging drugs, 

expression of p53, p21, p16 or of constantly hyper-

activated Ras/Rak/Akt [47-50]. When the cell cycle is 

arrested but mTOR is active then cells senesce [17]. 

Hyper-active Ras, Raf, Akt not only can arrest cycle but 

additionally activate the mTOR pathway. Rapamycin 

and also upstream inhibitors of mTOR suppresses 

geroconversion in different models of premature and 

physiological senescence in culture [2, 17, 42, 51-55]. 

 

By causing cell cycle arrest, p53 puts such cells on the 

path of senescence. Simultaneously, p53 can inhibit 

mTOR [56-60] and can suppress geroconversion [61-

66, 58]. This may determine a dual role of p53 in aging 

[63, 67-70]. 

 

mTOR stimulates cellular growth and functions [71-74] 

and cause signal (insulin) resistance by feedback loops 

[75- 82]. Aging cells are over-activated, hyper-

functional (for example, hyper-secretory) and secondary 

signal resistant [18]. This may result in cell 

malfunctions and even cellular loss (for example, loss 

of beta-cells in diabetes type II). Hyper-functions, 

malfunctions and signal-resistance in turn cause age-

related diseases from metabolic syndrome, 

atherosclerosis and hypertension to neurodegeneration 

and osteroporosis  [83-85]. And not coincidentally, 

rapamycin is indicated for prevention of all age-related 

diseases including cancer [83-86]. The sum of all 

diseases determines the risk of death [85]. And aging is 

defined as increase of accidence of death with age. So if 

TOR-dependent cellular aging increases the risk of 

death, then rapamycin must extend life span.  Indeed, 

inhibition of the TOR pathway extends lifespan in span 

in diverse organisms from yeast to mice [87-97, 46]. 

 

 
 

 

 

Linking progeria to aging: 4 scenarios 

 

There are at least four models, which are not mutually 

exclusive 

 

Scenario 1. Progerin is detectable in normal cells from 

normal elderly humans [98]. In normal human 

fibroblasts, telomere damage during replicative 

senescence activates progerin production [10]. In 

theory, progerin can accumulate. In this scenario, 

normal aging is caused by progerin or at least in some 

individuals accumulation of progerin is life-limiting. If 

so, progeria is a truly accelerated aging or at least 

accelerated component of aging.  Still, there is no 

evidence so far that progerin normally reaches toxic 

levels. Also telomere erosion is preferentially a cell 

culture phenomenon. And elevated progerin production 

was not seen during cellular senescence that does not 

entail telomere shortening [10]. On the other hand, 

patients with dyskeratosis congenita, an inherited bone 

marrow failure syndrome, have very short telomeres 

[99]. Also, there may be synergy with additional 

abnormalities such as abnormalities of nuclear pore 

complex in aging cells [100]. 

 

Scenario 2. Normal aging is caused by overactivation of 

TOR-centric pathways such as mTOR, MAPK and 

kinases of the DNA damage response (DDR).  Progerin 

can activate DDR  [101]. In turn, DDR may activate the 

mTOR pathway  [102]. Noteworthy, cellular senescence 

of regular cells is characterized by DDR even in the 

absence of actual DNA damage (pseudo-DDR) [103]. 

And pseudo-DDR is inhibited by rapamycin [103]. So 

there is cross talk between mTOR and DDR [104, 105]. 
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Figure 2. mTOR-driven senescence in arrested normal cells 

When cell cycle is blocked, mTOR drives senescence 



Therefore, by activating DDR pathways, progerin might 

also promote geroconversion. 

 

Scenario 3.   mTOR inhibits autophagy and  insufficient 

autophagy is involved in normal aging [106-109]. 

Rapamycin also causes clearance of aggregation-prone 

proteins [110]. In progeria, rapamycin activates 

clearance of progerin thus slowing down the progeric 

aging. Thus, rapamycin can affect both progeria and 

normal aging via activation of autophagy of different 

proteins and structures. 

 

Scenario 4. Two different mTOR activities are 

responsible for deceleration of normal and progeric 

aging. In progeria, this is autophagy. In normal aging, 

this is suppression of cellular hyper-functions, such as 

hyperfunctions (such as secretion) and hormone-

resistance. Rapamycin would be effective in both 

conditions but by different reasons. In analogy, 

rapamycin could be used for certain fungal and viral 

infection, even though they do not cause normal aging. 

 

Accelerated  aging 

 

Still, progeria is not accelerated “normal” aging exactly. 

What is accelerated “normal” aging or accelerated 

aging, for brevity. If aging is driven by inappropriate 

activation of nutrient-, hormone- and mitogen-sensing 

pathways such as mTOR, then nutrients and insulin can 

accelerate aging. In fact, obesity is associated with all 

age-related diseases and dramatically shortens life span. 

This is the accelerated normal aging. As an example, 

the maximum “years lost life” (YLL) for white men 

aged 20 to 30 years with a severe level of obesity (BMI 

>45) is 13 years, representing a 22% reduction in 

expected remaining life span [111]. As long ago 

suggested by the Russian endocrinologist Vladimir 

Dilman, time flies faster in the obese. 

 

This also could be considered from the point of view of 

a quasi-programmed aging. Aging is not programmed of 

course but is an aimless continuation of a program of 

developmental growth [74, 112-115]. And growth is 

driven in part by mTOR (activated by growth factors 

and nutrients). 

 

Rapamycin for progeria and (age-related diseases) 

 

Inhibiting farnesylation of progerin by farnesyl 

transferase inhibitors (FTI) prevents the nuclear 

blebbing of progeria and has positive effects in animal 

models [116-122]. Yet, the FTI lonafarnib is a relatively 

cytotoxic agent with gastrointestinal and hematological 

dose-limiting toxicities (in cancer patients) [123]. It was 

shown that insulin-like growth factor 1 extends 

longevity in a mouse model of human premature aging 

[124]. However, there is still a long way to clinical 

applications. 

 

Therefore, rapamycin, a non-toxic prescription drug, is 

a very attractive option. Also, in addition to clearance of 

progerin, rapamycin in theory would suppress 

geroconversion downstream of progerin. Furthermore, 

rapamycin prevents atherosclerosis in animal models of 

accelerated atherosclerosis [125, 126] and can prevent 

atherosclerotic restenosis in humans  [127]. And 

accelerated atherosclerosis is one of the main symptoms 

of progeria and ultimately the cause of death. 

 

There is a misconception that rapamycin increases 

chances of infections and cancer. In reality, rapamycin 

is an effective cancer preventive agent in both animals 

[128, 96, 129] and humans [130, 131], in part, because 

it slows down organismal aging [132]. Rapamycin is 

not a general immunosuppressant, it induces tolerance 

to transplanted organs (when used in combination with 

immunosuppressants).  “Figuratively, it transforms 

immunity from aged-type to infant-type” [83]. 

Rapamycin can actually improve responses to infections 

as immunostimulator [133, 46, 134]. Furthermore, to 

treat progeria (as well as age-related diseases in normal 

aging), rapamycin will be used in lower doses and 

intermittently, so a few (if any) side effects could be 

expected. 

 

As discussed [135], an increase of lipids in blood occurs 

because rapamycin increases lyposysis (like starvation) 

and simultaneously decreases lipid entry into the 

tissues, including the arterial wall. Therefore, 

rapamycin prevents atherosclerosis in animals and 

humans (despite increased lipids) [125-127]. Needless 

to say, rapamycin is a clinically approved, non-toxic 

drug, which is used for many years in high and chronic 

doses in transplant patients. But what is about treating 

children? Rapamycin is successfully used for the 

treatment of TSC syndrome in children [136].  Now is a 

turn of progeria [1]. And perhaps now is the time for 

postponing age-related diseases of normal aging in our 

life time [137]. 
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