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INTRODUCTION 
 

Alzheimer’s disease (AD) is the most common form of 

dementia in the ageing population and affects millions 

of people worldwide [1]. At the neuropathological level, 

AD is characterized by neuronal cell loss and the 

combined presence of two lesions in the brain - 

extracellular amyloid-beta (Aβ) plaques and 

intracellular neurofibrillary tangles (NFTs) [2]. The 

extracellular deposits contain aggregated Aβ peptides 

[3], while intraneuronal tangles are aggregates of hyper-

phosphorylated forms of the neurofilament-associated 

protein tau [4]. Evidence suggests that the pathogenesis 

of AD involves deleterious neurotoxic effects of both 

types of aggregates [5;6]. However, numerous studies 

strongly support a critical role of Aβ aggregates in the 

initiation phase of AD pathogenesis, while tau might 

mediate toxicity and impairment of neuronal function 

[5-9]. 

 

Aβ is a proteolytically processed fragment of the 

amyloid precursor protein (APP) [10;11]. It occurs in 

different length variants with peptides of 40 amino acid 

residues (Aβ40) and 42 amino acid residues (Aβ42) 

being the most prevalent. The longer Aβ42 variant has a 

much higher propensity to form aggregates. Genetic 

studies identified mutations in three genes that cause 

familial forms of AD (FAD): APP, presenilin-1 (PS1), 

and presenilin-2 (PS2) [12]. Mutations in each of these 

genes result in elevated levels of Aβ production and/or 

promote its aggregation. This genetic correlation 

strongly favours the key role of Aβ in AD. However, 

Phosphorylation of amyloid beta (Aβ) peptides – A trigger for formation of 
toxic aggregates in Alzheimer’s disease 

 
Sathish Kumar1 and Jochen Walter1 

 
1Department of Neurology, University of Bonn, 53127 Bonn, Germany 
 
Running title: Phosphorylation of amyloid β-peptides  
Key words: Alzheimer’s disease, amyloid β-peptide, oligomers, phosphorylation, post translational modification, protein 
folding, conformation and aggregation 
 
Received: 8/08/11; Accepted: 8/17/11; Published: 8/21/11 
Correspondence to Jochen Walter, Jochen.Walter@ukb.uni-bonn.de 
 
Copyright: © Walter et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which 
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited 

 
Abstract: Alzheimer’s disease (AD) is the most common form of dementia and associated with the progressive 

accumulation of amyloid β-peptides (Aβ) in form of extracellular amyloid plaques in the human brain. A critical role of 

Aβ in the pathogenesis of AD is strongly supported by gene mutations that cause early-onset familial forms of the 

disease. Such mutations have been identified in the APP gene itself and in presenilin 1 and 2. Importantly, all the 

identified mutations commonly lead to early deposition of extracellular plaques likely by increasing the generation 

and/or aggregation of Aβ. However, such mutations are very rare and molecular mechanisms that might trigger 

aggregation and deposition of Aβ, in the most common late onset AD are largely unknown. We recently demonstrated 

that extracellular Aβ undergoes phosphorylation by a cell surface-localized or secreted form of protein kinase A. The 

phosphorylation of serine residue 8 promotes aggregation by stabilization of β-sheet conformation of Aβ and increased 

formation of oligomeric Aβ aggregates that represent nuclei for fibrillization. Phosphorylated Aβ was detected in the 

brains of transgenic mice and human AD brains and showed increased toxicity in Drosophila models as compared with 

non-phosphorylated Aβ. Together, these findings demonstrate a novel molecular mechanism that triggers aggregation 

and toxicity of Aβ. Thus, phosphorylation of Aβ could be relevant in the pathogenesis of late onset AD. The 

identification of extracellular protein kinase A should also stimulate pharmacological approaches to decrease Aβ 

phosphorylation in the therapy and/or prevention of AD. 
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mutations in APP and PS are very rare, and the causes 

of the much more common late onset forms of AD 

(LOAD) are largely unidentified. In line with a 

significant role of Aβ in pathogenesis, recent data show 

that various post-translational modifications of Aβ 

promote its aggregation and therefore could play 

important roles in the initiation of LOAD. 

Generation of Aβ by proteolytic processing of APP 

and effects of AD associated mutations 

 

APP is a type I membrane protein and ubiquitously 

expressed in most cell types. Alternative mRNA 

splicing leads to several cell type and development-

specific isoforms [2]. In addition, two homologous 

APP-like proteins (APLPs) have also been identified, 

Figure 1: Schematic representation of generation of Aβ by proteolytic processing of APP and the 
familial AD causing APP mutations. (A) Two pathways (β/γ and α/γ) of APP proteolysis. APP can be cleaved 

by either β- or α-secretase, which is then followed by γ-secretase cleavage results in the generation of either the 
p3-fragment (non-amyloidogenic) or an Aβ (amyloigenic pathway). The designation of secretases, substrates and 

products are depicted, (B) Representation of APP familial AD causing mutations that are identified around N- and 

C-terminal and in the middle region of Aβ. The amino acid residues are numbered according to Aβ sequence. The 
swedish mutation (KM>NL) at N-terminus of Aβ near to β-secretase cleavage site increases the total production 
of Aβ, whereas the mutations C-terminus of Aβ results in increased production of Aβ42 by altering γ-secretase 
activity. The mutations in the middle region of Aβ might decrease the α-secretory cleavage, facilitate the 
amyloidogenic processing, promote the Aβ production and/or increases the propensity of Aβ aggregation or 
stabilizes the Aβ against clearance by different proteases. 
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that together form a small protein family with important 

physiological functions in perinatal and postnatal 

development and cell communication [13]. However, 

APLPs do not contain the Aβ sequence and thus APP is 

the sole source of Aβ peptides in the brain [14].  

 

Aβ is produced during normal cellular metabolism and 

secreted to the extracellular milieu of the human brain 

and also found in cerebrospinal fluid (CSF) [15;16]. 

The presence of Aβ in the CSF of nondemented 

individuals and in the media from neuronal cell cultures 

during normal metabolism could indicate a 

physiological role of Aβ in the central nervous system 

[17]. Suggested physiological function of Aβ includes 

ion channel modulation [18], kinase activation [19], 

regulation of cholesterol transport [20], protection 

against metal-induced oxidative damage [21], learning 

and memory [22] and transcriptional regulation of AD-

associated genes [23].  

 

The generation of Aβ is initially starts with a cleavage 

of APP by β-secretase at the N-terminus of the Aβ 

domain (Figure 1A). This cleavage results in the 

shedding of the APP ectodomain and the generation of a 

membrane bound carboxyl (C)-terminal fragment (CTF-

β). Subsequently, γ-secretase mediates the apparently 

intramembranous cleavage of CTF-β resulting in the 

liberation of Aβ into conditioned media of cultured cells 

or extracellular fluids of the brain or the periphery 

[2;11]. Alternatively, APP can also be cleaved in a non-

amyloidogenic pathway that involves initial cleavage by 

α-secretase within the Aβ domain thereby precluding 

the subsequent generation of Aβ peptides (Figure 1A) 

[24]. 

 

The mutations within APP that causes early onset AD 

(EOAD), are all located within or close to the Aβ 

domain. Notably, a double mutation in APP at the 

cleavage site for β-secretase that cause EOAD increases 

the β-secretory cleavage resulting in an overall higher 

production of Aβ peptides (see Swedish mutation, 

Figure 1B) [25]. Additional EOAD-associated 

mutations located close to the cleavage site for γ-

secretase at c-terminal of Aβ also alter the proteolytic 

processing of APP (Figure 1B). These mutations 

increase the ratio of Aβ42/40 peptides thereby 

promoting the relative production of Aβ variants with 

higher propensity to aggregate [26]. Mutations found in 

the middle of the Aβ domain might exert different 

effects (Figure 1B), (1) they might decrease the α-

secretory cleavage of APP thereby facilitating 

amyloidogenic processing of APP [27], (2) these 

mutations could also increase the aggregation [28], (3) 

and/or alter the degradation by different proteases [29].  

 

Beside the APP gene, two additional genes have been 

identified to contain mutations that lead to EOAD [30]. 

Both genes encode highly homologous PS proteins that 

are critical components of the γ-secretase complex, 

which includes three additional proteins such as 

nicastrin, APH-1 (anterior pharynx-defective 1), and 

PEN-2 (presenilin enhancer 2) to exert γ-secretase 

activity in cells [31]. The mutations in PS1 or PS2 also 

alter γ-secretase activity and/or cleavage specificity, 

resulting in higher ratios of Aβ42/40 [31]. Together, all 

mutations in the three genes known to be associated 

with EOAD affect the generation and/or aggregation of 

Aβ [25;27]. However, as mentioned before such 

mutations are very rare and mechanisms that increase 

the aggregation and accumulation of Aβ and cause the 

much more common sporadic forms of AD (>95% of all 

cases), are largely unknown. According to the 'amyloid 

hypothesis', accumulation of Aβ in the brain is the 

primary influence driving AD pathogenesis. The rest of 

the pathogenic events, including impaired synaptic 

function and cell communication [7;32;33], activation 

of microglia and astrocytes [34;35], neuronal ionic 

homeostasis and oxidative injury [36], mitochondrial 

dysfunction [37], altered kinase/phosphatases activities 

leading to formation of neurofibrillary tangles 

containing tau protein, is proposed to result from an 

imbalance between Aβ production and Aβ clearance 

[38].   

 

Aβ aggregation - routes to neurotoxic assemblies 

 

Amyloid formation in AD is conceptualized as a 

complex process of protein aggregation, involving the 

misfolding of Aβ into soluble and insoluble assemblies 

[39]. Monomeric Aβ is mainly composed of α-helical 

and/or unordered structure, whereas the misfolded 

polymers are rich in β-sheet conformation. The 

conformational changes leading to the formation of 

extended β-sheets promotes homophilic interactions and 

eventually leads to Aβ oligomer formation. Kinetic 

studies have suggested that misfolding of monomeric 

Aβ precedes formation of oligomers, which then serve 

as seeds/nuclei for accelerated fibril growth (Figure 2) 

[40].  

 

A widely accepted concept for the formation of amyloid 

fibrils is the nucleation-dependent polymerization 

model [41-43], which separates the fibrillization process 

into a nucleation phase and an elongation phase. 

Nucleation requires the self-association of soluble 
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monomers, which is thermodynamically unfavourable 

and so occurs slowly. In the nucleation phase, 

monomers undergo conformational changes and self-

associate to form oligomeric nuclei that are rich in β-

sheets. Once the nucleus is formed, assembly of larger 

aggregates and fibril elongation, a much more 

favourable process and proceeds rapidly. As a result, the 

kinetics of amyloid fibril formation is well represented 

by a sigmoidal shape with a nucleation phase/lag phase 

followed by a rapid growth phase, followed by a 

saturation phase (Figure 2; green curve). The lag phase 

is determined by the critical concentration of nuclei, 

which represent seeds for further growth of the 

polymers finally resulting in mature fibrils. 

Accordingly, the lag phase of aggregation can be 

shortened by addition of preformed seeds (Figure 2; red 

curve). 

 

In a landmark discovery, Pike et al., [44], established 

that innocuous monomers of Aβ become neurotoxic 

upon aggregation. It was further shown that toxicity of 

Aβ involved self-association of monomers into 

oligomers and higher aggregated forms [45]. This is 

further supported by in vitro [46-48], and in vivo studies 

showing that oligomeric and pre-fibrillar Aβ assemblies 

are potent neurotoxins [5;49;50]. A correlation between 

soluble oligomeric Aβ levels and the extent of synaptic 

loss and severity of cognitive impairment further 

corroborate the findings [7;32]. Thus, neurotoxicity 

appears to require toxic oligomeric assemblies of Aβ. 

The formation of such neurotoxic assemblies in the 

brain generated due to higher production and/or 

decreased clearance of Aβ [51;52]. 

 

 

Effect of post-translational modification on 

aggregates formation, toxicity and clearance 

 

Amyloid plaques in the human AD brain are known to 

contain a heterogeneous mixture of Aβ peptides [53]. In 

addition to main Aβ species (Aβ40 and Aβ42), a variety 

of post-translationally modified variants have been 

identified [54], including truncation [55-58], 

racemization [59;60], isomerization [61;62], 

pyroglutamination [63;64], metal induced oxidation 

[65] and phosphorylation [66-68]. 

Figure 2: Nucleation-dependent polymerization model of amyloid aggregation. Amyloid formation 
consists of two phases: (i) a nucleation phase/lag phase, in which monomers undergo conformational 
change/misfolding and associate to form oligomeric nuclei, and (ii) a elongation phase/growth phase, in which 
the nuclei rapidly grow by further addition of monomers and form larger polymers/fibrils until saturation. The 
‘nucleation phase’, is thermodynamically unfavourable and occurs gradually, whereas ‘elongation phase’, is much 
more favourable process and proceeds quickly. Thus, kinetics of amyloid formation is well represented by a 
sigmoidal curve with a lag phase followed by rapid growth phase (green curve). The rate limiting step in the 
process is the formation of nuclei/seeds to promote aggregation. Thus, amyloid formation can be substantially 
speedup by the addition of preformed seeds (nuclei). The addition of seeds reduces the lag time and induces 
faster aggregate formation (red curve). 
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The N-terminal truncated variants of Aβ beginning at 

amino acid 3, 11 and 25 are present in senile plaques 

and vascular amyloid deposits [56;57;57;69-71]. The 

truncated Aβ25-35 is shown to favour aggregation in 

vitro [72]. Due to potential toxic effects of truncated 

Aβ25–35, it has been frequently used for aggregation or 

toxicity studies [73]. Racemization of Aβ at Asp7, 

Asp23 and Ser26 was reported in the human brain and 

aggregation properties of Aβ were influenced by the 

position of the racemized residue [59;60]. Isomerization 

of aspartate residues at position 1, 7 and 23 of Aβ 

results in structural transition of Aβ and also shown to 

occur in vivo [62]. Isomerization of Aβ promotes fibril 

formation in vitro and resistance to proteolytic 

degradation [61]. In addition Aβ can undergo 

pyroglutamination also resulting in faster aggregation 

[74;75].  

 

Thus, post-translational modifications of Aβ could 

promote oligomer and aggregate formation, thereby also 

reducing the degradation by a variety of proteases [76-

79]. Modified Aβ peptides show enhanced cytotoxicity 

as compared to non-modified peptides [73], and serve 

as seeding species for Aβ aggregate formation in vivo 

[66;74;78]. These post-translationally modified Aβ 

variants appear to be present at an early stages of the 

disease [58;66;71;74]. 

 

Extracellular phosphorylation  

 

Phosphorylation is an important reversible post-

translational modification that regulates the structural 

and functional properties of proteins in health and 

disease [80]. Phosphorylation is a key step in the 

regulation of protein activity, cell cycle control, gene 

regulation, learning and memory [81]. In addition to 

intracellular protein kinases (PKs), extracellular PK 

activities have also been described [82]. These 

extracellular kinases phosphorylate cell-surface proteins 

and soluble extracellular substrates, and thus could 

affect many physiological processes involving cell-cell 

contacts, cellular differentiation and proliferation, ion 

transport [82]. Depending on the localization, these PKs 

are differentiated as ecto-PKs and exo-PKs. Ecto-PKs 

are localized at the external surface of the plasma 

membrane (membrane bound) where they exert their 

catalytic activity [83-86]. Exo-PKs are secreted/shedded 

to the extracellular milieu [87;88]. Ecto- and Exo-PKs 

can phosphorylate extracellular membrane bound 

proteins and soluble proteins Both Ecto- and Exo-PKs 

use extracellular ATP as co-substrate, which can be 

released by intact cells [89;90]. Extracellular ATP plays 

physiological roles in neurite outgrowth, 

neurotransmission and glial communication [91]. The 

release of extracellular ATP is mediated by 

metabotropic (P2Y) and ionotropic (P2X) receptors, 

both are widely expressed in the nervous system [92]. In 

the brain, extracellular ATP is present in low nanomolar 

concentrations. However, the local ATP concentration 

can increase upon certain stimuli, including synaptic 

activation [89;93], inflammation [94] and ischaemia in 

vivo [95]. Therefore, extracellular phosphorylation is 

likely to play a role in normal as well as pathological 

processes in the brain. 

 

Phosphorylation of Aβ 

 

A variety of AD associated proteins including APP [96-

98], BACE [99;100], PS [101;102] and tau [103;104], 

are shown to be phosphorylated. Phosphorylation of 

these proteins affects subcellular trafficking, interaction 

with adapter proteins, signal transduction cascades, APP 

processing, Aβ generation and tangle formation. In AD, 

tau is shown to be abnormally hyperphosphorylated at 

several Ser/Thr residues. Hyperphosphorylation and 

subsequent accumulation of neurofilament subunits is a 

typical feature of the AD brain [105;106]. However, the 

pathophysiological relevance of tau phosphorylation is 

still under debate. 

 

In silico analysis revealed that Aβ contain potential 

phosphorylation sites at serine residue at 8
th

 and 26
th

 

position and tyrosine residue at 10
th
 position. Aβ can 

undergo phosphorylation by protein kinase A and cdc 2 

in vitro [68], as well as by cultured cells and in human 

CSF (Kumar, 2009; URN: urn:nbn:de:hbz:5N-18193).  

 

We recently showed that Aβ is phosphorylated at 

serine-8 by extracellular protein kinase A. 

Phosphorylation of Aβ promoted the formation of toxic 

aggregates [66]. The formation of small soluble 

oligomers is associated with the conformational 

transition of Aβ from α-helical and random coiled state 

to a β-sheet structure, as demonstrated by circular 

dichroism. Phosphorylation-state specific antibodies 

were used in western-blotting and 

immunohistochemistry to demonstrate the occurrence of 

phosphorylated Aβ in murine AD models and AD 

patient’s brain tissue. Notably, these antibodies further 

confirmed that phosphorylation occurs at free 

extracellular Aβ rather than at the full-length APP or β-

CTF, the precursors of Aβ peptide. Phosphorylated Aβ 

co-localized with non-phosphorylated Aβ in 

extracellular plaques [66]. Interestingly, phosphorylated 

 
 
www.impactaging.com                 5                                         AGING, August 2011, Vol.3 No.8 



 

Aβ appeared to be concentrated in the centre of 

individual plaques and was detected as early as at 2 

months of age in APP transgenic mice, and then 

accumulated with aging. The detection of 

phosphorylated Aβ in oligomeric assemblies in mouse 

brain homogenates suggested that phosphorylation also 

increases aggregation of Aβ in vivo. Therefore, we 

hypothesize that phosphorylation of Aβ might act as a 

conformational switch, thereby promoting the formation 

of aggregates. 

 

To test the effect of Aβ phosphorylation on toxicity in 

vivo, transgenic Drosophila models were employed. 

Since Drosophila allows the selective expression of Aβ 

independent of its precursor APP [107;108], transgenic 

Drosophila flies expressing either the wild type Aβ 

(AβWT) or pseudophosphorylated mutant (AβS8D) 

were generated. When expressing AβWT and AβS8D 

mutant in photoreceptor cells in Drosophila eyes, the 

pseudophosphorylated AβS8D variant showed 

significant cell degeneration compared to AβWT, 

demonstrating increased toxicity of 

pseudophosphorylated Aβ. Notably, 

pseudophosphorylated AβS8D also accumulated to 

much higher levels in aged flies than AβWT, strongly 

indicating increased aggregation. In addition, transgene 

expression in the fly brain showed stronger age-

dependent accumulation of pseudophoshporylated Aβ 

peptides as compared to AβWT. The increased toxicity 

of pseudophosphorylated Aβ was revealed by altered 

climbing behaviour upon aging. This progressive age-

dependent phenotype, correlates with Aβ peptide 

accumulation, indicating that pseudophosphorylated Aβ 

can mimic the effect of phosphorylation on Aβ 

aggregation in vivo [66]. 

 

The Aβ plaque formation could be induced by 

inoculation of amyloid containing brain homogenates 

from human or transgenic mouse into brains of 

monkeys or APP transgenic mice, suggesting the 

occurrence of nucleation-dependent fibrillization in vivo 

[109;110]. As phosphorylation of Aβ promotes 

oligomer formation, phosphorylated Aβ oligomers 

could serve as seeds or nuclei that increase the rate of 

aggregation. In agreement with this hypothesis, the 

nuclei of phosphorylated Aβ were capable to promote 

aggregation of non-phosphorylated Aβ in vitro  [66].  

 

Several proteases or peptidases have been reported that 

are able to cleave Aβ and thereby contribute to efficient 

removal of Aβ in the brain [52;111]. It will therefore 

also be interesting to assess the effect of 

phosphorylation on protease dependent degradation of 

Aβ. 

 

CONCLUSION 
 

Increasing evidence suggests that phosphorylation of 

proteins involved in several neurodegenerative diseases 

and plays a serious role during the pathogenesis 

[67;112;113]. The role of phosphorylation in 

modulating the aggregation and fibrillogenesis of tau in 

AD and α-synuclein in Parkinson’s disease (PD) is 

currently a subject of intense investigation 

[103;114;115]. Our studies provide evidence that Aβ 

can undergo phosphorylation. Phosphorylation 

promotes conformational transition and formation of 

toxic aggregates. Further, phosphorylated Aβ 

aggregates could serve as endogenous seeds triggering 

further aggregation of soluble, extracellular Aβ into 

plaques in the brain. Phosphorylation stabilizes the Aβ 

against degradation by various proteases in vitro and in 

cell cultures (Kumar et al., Unpublished data). The 

stabilization of Aβ by phosphorylation might play a 

crucial role in AD pathogenesis, because it would 

eventually result in increased concentrations of this 

peptide in the brain. Therefore, inhibition of 

extracellular kinases or stimulation of Aβ 

dephosphorylation could be pursued as valuable targets 

to prevent or slow down the progression of AD. Further, 

the detection of phosphorylated Aβ in biological fluids 

could also be explored for evaluation as biomarkers. 

Together, phosphorylation of Aβ might have very 

important implications for AD pathogenesis and offer 

novel therapeutic avenues. 
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