www.impactaging.com AGING, September 2011 Vol 3 No 9

Review

Repairing split ends: SIRT6, mono-ADP ribosylation and DNA repair
Michael Van Meter, Zhiyong Mao, Vera Gorbunova, and Andrei Seluanov

Department of Biology, University of Rochester, Rochester, NY 14627, USA

Key words: Aging, cancer, SIRT6, DNA repair, PARP1

Received: 9/12/11; Accepted: 9/22/11; Published: 9/22/11

Correspondence to: Vera Gorbunova, PhD and Andrei Seluanov. PhD; E-mail: vera.gorbunova@roche ster.edu;
andrei.seluanov@rochester.edu

Copyright: © Van Mete et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Abstract: The sirtuin gene family comprises an evolutionarily ancient set of NAD+ dependent protein deacetylase and
mono-ADP ribosyltransferase enzymes. Found in all domains of life, sirtuins regulate a diverse array of biological processes,
including DNA repair, gene silencing, apoptosis and metabolism. Studies in multiple model organisms have indicated that
sirtuins may also function to extend lifespan and attenuate age-related pathologies. To date, most of these studies have
focused on the deacetylase activity of sirtuins, and relatively little is known about the other biochemical activity of sirtuins,
mono-ADP ribosylation. We recently reported that the mammalian sirtuin, SIRT6, mono-ADP ribosylates PARP1 to promote
DNA repair in response to oxidative stress. In this research perspective we review the role of SIRT6 in DNA repair and
discuss the emerging implications for sirtuin directed mono-ADP ribosylation in aging and age-related diseases.

INTRODUCTION

fly and worm. At the molecular level, SIRT6 regulates
Sir2 enzymes, or sirtuins, are NAD" dependent protein the expression of a large number of stress-responsive
deacetylases and mono-ADP ribosyltransferases which and metabolism related genes [16-18], promotes
regulate lifespan in S. cerevisiae [1], C. elegans [2] and genomic stability [19, 20] and stimulates base excision
D. melanogaster [3]. In each of these systems, [19] and double strand break DNA repair [21-23].
overexpression or hyperactivation of Sir2 or its Consistent with these molecular functions, SIRT6
homologs extends lifespan. In yeast, this lifespan knock-out mice develop a degenerative disorder that in
extension is achieved by promoting genomic stability many ways resembles premature aging [19]. These mice
[4], regulating gene expression [5, 6] and suppressing exhibit kyphosis, cachexia, greying of the fur, decreased
the formation of extra-ribosomal circles [1, 7]. In the bone mineral density, hypoglycemia, chronic
roundworm sir-2.] promotes longevity by modulating inflammation and a severely shortened lifespan. This
daf-16 (FOXO) signaling [2] and regulating the progeria is completely penetrant in multiple genetic
proteostasis stress response [8]; Sir2 extends lifespan in backgrounds [24].
the fruit fly by coordinating a different stress response —
the dietary restriction pathway [3]. Mammalian To date, most of the molecular functions of SIRT6 have
genomes encode seven Sir2 homologs (SIRT1-7); while been ascribed to the protein’s deacetylase activity;
it is unclear whether overexpression or hyperactivation SIRT6 is known to deacetylate H3K9 [20], H3K56 [25,
of any of these sirtuins can extend lifespan, there is 26] and CtIP [22] in vivo. Very little had been known,
evidence that these genes can protect against several however, about the biological significance of the
age-related pathologies, including neurodegeneration protein’s mono-ADP  ribosyltransferase  activity.
[9], hearing loss [10], diet induced obesity [11, 12] and Recently we reported that SIRT6 mono-ADP
cancer [13-15]. ribosylates PARP1 to stimulate DNA repair in response

to oxidative stress [23]. In this research perspective, we
Of the mammalian sirtuins, SIRT6 recapitulates many will review the role of SIRT6 in DNA repair and
of the biological functions of Sir2 and its homologs in discuss the emerging implications for sirtuin directed
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mono-ADP ribosylation in the context of aging and age-
related disease.

SIRT6 and double strand break repair

Maintenance of genomic stability is a challenge faced by
all organisms. The most grievous challenge to genomic
stability comes in the form of DNA damage, and, in
particular, lesions which cause double strand breaks
(DSBs) [27]. Unrepaired, DSBs can lead to a host of
adverse cellular phenotypes including irregular gene
expression, permanent cell cycle arrest, cell death and
malignant transformation. For this reason, eukaryotes
have evolved two independent pathways for repairing
this dangerous form of damage: homologous
recombination (HR) [28] and non-homologous end
joining (NHEJ) [29]. Efficient DSB repair is often a
limiting factor for longevity, and mutations in the core
DSB repair enzymes frequently result in a variety of
disease states including premature-aging and a
predisposition for cancer, underscoring the importance of
DSB repair in the context of health and aging [30, 31].

The first evidence that SIRT6 may impact on DSB
repair came from the observation of genomic instability
in SIRT6 knock-out mice; cells from these mice exhibit
a high incidence of chromosomal rearrangement and
breakage as well as a hypersensitivity to y-irradiation
[19]. Two subsequent studies noted that knockdown of
SIRT6 in human cells similarly sensitized the cells to
chemically induced DSBs, and also observed that
SIRT®6 is recruited to break sites after DNA damage [21,
22]. The first of these studies suggested that SIRT6
functions in NHEJ by stabilizing the NHEJ haloenzyme,
DNA-PK, at the site of DSBs, and the second study
revealed that SIRT6 promotes HR by deacetylating, and
thereby activating, the end resection protein, CtIP.
These studies provided the first mechanistic insight into
how SIRT6 functions in DSB repair.

Our group recently published a report that further
clarifies the role of SIRT6 in DNA repair and
underscores the dynamic role that SIRT6 plays in
promoting genomic stability, especially in response to
oxidative stress [23]. Whereas previous studies had
depleted SIRT6 to assess its role in DNA repair, we
noted that overexpression of SIRT6 stimulated DSB
repair through both the HR and NHEJ pathways by
approximately 3-fold. Strikingly, when cells were
pretreated with  oxidative  stressors  prior to
overexpression of SIRT6, DSB repair efficiency was
massively stimulated by up to 16-fold, suggesting that
SIRT6 specifically integrates stress signaling to prime
the DNA repair machinery in response to oxidative
stress. Consistent with this hypothesis, we observed that

while SIRT6 is normally recruited to DSB sites
relatively late, approximately 8 hours after induction of
the DSB, pretreatment with paraquat resulted in an early
wave of SIRT6 recruitment to the breakage points,
within 30 minutes of inducing the break.

To assess which biochemical activity of SIRT6
mediated this stress response, we synthesized SIRT6
mutants which could catalyze only deacetylation or only
mono-ADP ribosylation reactions, thereby uncoupling
these two enzymatic activities. Intriguingly, both of
these activities were required to stimulate DSB repair,
indicating that SIRT6 played a role in DSB repair
beyond interacting with DNA-PKcs and deacetylating
CtIP. Consistent with this hypothesis, we found that
SIRT6 mono-ADP ribosylates the upstream DSB repair
factor, PARPI, at lysine 521, thereby stimulating its
poly-ADP ribosylation activity. Importantly, this
modification was required for SIRT6-mediated
stimulation of DSB repair. Mechanistically, PARPI
enables several crucial interactions in the early stages of
DSB repair by poly-ADP ribosylating itself and other
protein substrates. Notably, PARP1 facilitates the
recruitment of the MRN complex to DSBs [32], plays a
role in the activation of ATM [33] and helps to direct
the choice between the NHEJ and HR repair pathways.
Additionally, PARP1 is required to promote a non-
canonical form of NHEJ (Alt-NHEJ) [34]; consistent
with this, SIRT6 can stimulate NHEJ in the absence of
DNA-PK, an essential canonical-NHEJ enzyme,
suggesting that SIRT6 can stimulate NHEJ through the
alternative pathway.

The interaction with PARP1 explains the early
recruitment of SIRT6 to sites of DSBs under stressed
conditions. Intriguingly, we also observed that H3K9 is
globally deacetylated at a late, 8 hour post-break, time
point (Figure 1). Previous studies have indicated that
this deacetylation is dependent on SIRT6 [21]. Whereas
the early interaction between SIRT6 and PARP1 likely
functions to stimulate the repair process, it is possible
that this later wave of histone deacetylation functions to
restore the original chromatin structure of the locus or
to condense chromatin to prevent further damage.
Another intriguing possibility is that SIRT6
relocalization in response to DNA damage may affect
gene expression. Consistent with this possibility,
another mammalian sirtuin, SIRT1, relocalizes to DSB
sites in response to damage; this relocalization is
concomitant with deregulation of SIRTI-regulated
genes and may contribute to several aging phenotypes
[35]. It will be interesting to see if changes in gene
expression are associated with SIRT6 relocalization in
response to DNA damage, and what effect these
changes may have on the cell.
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Figure 1. The second wave of SIRT6 recruitment to
DSBs is concomitant with global deacetylation of H3K9.
Human fibroblasts were exposed to y-irradiation.
Immunoblotting revealed that H3K9-Ac levels are reduced 8
hours following irradiation, concurrent with a second wave of
SIRT6 recruitment to DSBs.

The finding that SIRT6 primes the DSB repair
machinery in response to stress suggests an
energetically pragmatic paradigm, wherein certain DNA
repair enzymes exist in a basal state under normal
conditions, but can become activated in response to
oxidative stress. Such a system would allow cells to
stimulate DNA repair under conditions in which they
are most likely to sustain DNA damage. This might be
beneficial because it would allow the cell to conserve
energy and curtail deleterious side-effects associated
with chronic activation of DSB repair enzymes which
can include oncogenic hyper-recombination and cell
death. Constitutive activation of PARP1, for example,
promotes cell death [36, 37]; SIRT6 mediated activation
of PARP1 specifically in response to stress may
represent a mechanism for controlling this response.

This adaptive response, wherein SIRT6 is mobilized
following mild doses of oxidative stress to activate
DNA repair machinery, in many ways resembles a
hormetic response. Hormesis predicts that exposure to
low levels of stress can result in favorable biological
outcomes such as increased resistance to stress or
extended lifespan; caloric restriction is a well
characterized example of this phenomenon [38, 39]. At
the cellular level, several studies have indicated that low
levels of oxidative stress are beneficial to the cell [40,
41]. It is possible that SIRT6 mediates this hormetic
response, providing a link between stress sensing
pathways and/or NAD' levels and DNA repair
machinery. This raises the intriguing possibility of using
pharmacological activators to stimulate SIRT6 activity
as a means of slowing and attenuating the onset of age-
related pathologies.

While SIRT6 has emerged as an important mediator of
genome stability (Figure 2), there are still several
questions with regards to the role that SIRT6 plays in
DNA repair. In response to oxidative stress, SIRT6 is
recruited to chromatin and mono-ADP-ribosylates
PARPI, but what triggers this reaction? ATM, NF-«xB
and the MAPKs are stress responsive kinases which
have been implicated in DSB repair or shown to interact
with other sirtuins [42-44] — it is possible one or more
of these proteins transduces stress signaling to SIRT®6.
Another intriguing question involves base excision
repair (BER) — SIRT6” mice exhibit a defect in BER,
although the etiology of this deficiency remains unclear
[45]. In response to single strand breaks, PARP1 binds
to DNA and facilitates the recruitment of BER factors
to instigate repair [46]. Could SIRT6 also promote BER
through PARP1, and if so, would this response also be
heightened in response to oxidative stress? Answering
these and other related questions will provide a clearer
understanding of the important role that SIRT6 plays in
genome maintenance.

Mono-ADP ribosylation

Although sirtuins are best understood in the context of
protein deacetylation, the founding member of this gene
family, Sir2, was first described as a mono-ADP
ribosyltransferase [47]. This form of post-translational
modification was first identified as a feature of several
bacterial toxins, including diphtheria, cholera and
pertussis. Subsequent studies revealed the presence of
cukaryotic mono-ADP  ribosyltransferases ~ which
function in multiple biological pathways, including
signal transduction, gene expression and cellular
differentiation [48, 49]. These transferases can broadly
be sorted into distinct categories on the basis of
homology and localization and include: classical mono-
ADP ribosyltransferases (ARTs), certain members of
the PARP family and sirtuins [48, 50].

The role of sirtuins as protein deacetylases has been
well characterized. Briefly, sirtuins couple NAD"
hydrolysis with lysine deacetylation to generate
deacetylated protein, and the metabolites O-acetyl-
ADP-ribose and nicotinamide [51]. Sirtuin mediated
deacetylation regulates a large array of biological
processes. Many sirtuins, however, also possess a less
characterized = enzymatic  activity, = mono-ADP
ribosylation [52]. In this context, sirtuins transfer the
ADP-ribose moiety of NAD' to acceptor proteins.
Ribosylation activities have been reported for sirtuins in
a wide range of organisms. For example the protozoan
T. brucei Sir2 homolog mono-ADP ribosylates H2A
and H2B in response to DNA damage [53]; yeast Sir2
catalyzes the transfer of ADP ribose to itself and
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Figure 2. SIRT6 regulates genomic stability. SIRT6 promotes genome stability by regulating DNA
single-strand and double strand break repair pathways and by facilitating telomere maintenance. The
deacetylase and the mono-ADP ribosyltransferase activities of SIRT6 both contribute to this function.

histones [47]; and the mammalian sirtuin, SIRT4
ribosylates glutamate dehydrogenase to suppress insulin
signaling in pancreatic B-cells [54]. Several studies have
also suggested that many other sirtuins, including E.
coli CobB, as well as mammalian SIRT1 and SIRT3,
possess mono-ADP ribosyltransferase activity, although
the biological significance of this activity remains
unclear because no in vivo substrates have been
identified for this reaction [52, 55]. Akin to Sir2, SIRT6
was first reported as an auto mono-ADP
ribosyltransferase [56], and only later discovered to
possess protein deacetylase activity [20].

Several recent reports have provided insight into the
biochemistry  of  SIRT6-mediated  mono-ADP
ribosylation and have suggested that there are
additional, as yet uncharacterized, substrates for this
reaction. Crystallography of SIRT6 revealed several
unique features, including the absence of a helix bundle
that typically connects the Rossmann and zinc binding
domains in other sirtuins [57]. This distinct structure
favors the binding of NAD" even in the absence of
acetylated substrate, and as a result may facilitate
mono-ADP ribosyltransfer reactions. Consistent with
the notion that SIRT6 is well suited to catalyze mono-
ADP ribosylation we recently reported that
overexpression of SIRT6 selectively induces massive
apoptosis in cancer cells but not non-cancerous cells
and that this cytotoxicity is dependent on the mono-
ADP ribosylation activity of SIRT6 [15]. As yet it is
unclear exactly how SIRT6 mono-ADP ribosylation
promotes death in cancer cells, but it appears to be

independent of PARP1, suggesting that there are
additional targets for SIRT6-mediated mono-ADP
ribosylation in vivo.

In consideration of the dual enzymatic activities of
sirtuins, early models predicted that the deacetylase
activity of sirtuins may function to regulate gene
expression, whereas the mono-ADP ribosylation
activity may mediate DNA repair [58]. While the
discovery of non-histone substrates for deacetylation,
and the observation that SIRT4 ribosylates a metabolic
enzyme suggests that this model may be simplistic,
there is evidence that mono-ADP ribosylation is an
important feature of DNA repair. Multiple studies have
observed that mono-ADP ribose is transferred to
histones in response to DNA damage [59-61], although
it is unclear if this response is entirely mediated by
sirtuins. The protozoan Sir2 homolog, TbSIR2RPI
ribosylates histones in response to DNA damage [53],
and we recently demonstrated that SIRT6 mono-ADP
ribosylates PARP1 to promote DNA repair in response
to oxidative stress. Future studies will be required to
reveal the full importance of sirtuin-mediated mono-
ADP ribosylation reactions.

Concluding remarks and prospectus

It is becoming clear that SIRT6 functions in multiple
pathways related to aging by facilitating DNA repair,
promoting telomere stability, attenuating NF-xB activity
and regulating metabolism. Intriguingly, destabilization
of any of these pathways can lead to the accumulation
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of aging related phenotypes [62-65]. It will be
interesting to see whether SIRT6 overexpression or
hyperactivity can ameliorate or delay the onset of age-
related pathologies, possibly by stimulating hormetic
response pathways. In this context we have shown that
SIRT6 overexpression can improve the efficiency of
NHEJ and HR, perhaps by mimicking an endogenous
response to oxidative stress. In a separate study, we
observed that SIRT6 overexpression induces massive
apoptosis in cancer cells, but not non-cancerous cells.
Finally, another group has indicated that SIRT6
overexpression protects against diet induced obesity in
mice [12]. Collectively, these studies provide support
for the hypothesis that SIRT6 may protect against aging
or age-associated pathologies, although more evidence
will be required to confirm this. It is worth noting that
several studies have indicated that it may be possible to
modulate SIRT6 activity using physiological or
pharmacological interventions [66, 67]. It will be
interesting to further assess whether modulating SIRT6
levels and activity can yield desirable clinical outcomes.
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