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Abstract: All tissues of the organism are affected by aging. This process is associated with epigenetic modifications such as
methylation changes at specific cytosine residues in the DNA (CpG sites). Here, we have identified an Epigenetic-Aging-
Signature which is applicable for many tissues to predict donor age. DNA-methylation profiles of various cell types were
retrieved from public data depositories - all using the HumanMethylation27 BeadChip platform which represents 27,578
CpG sites. Five datasets from dermis, epidermis, cervical smear, T-cells and monocytes were used for Pavlidis Template
Matching to identify 19 CpG sites that are continuously hypermethylated upon aging (R > 0.6; p-value <10'13). Four of these
CpG sites (associated with the genes NPTX2, TRIM58, GRIA2 and KCNQ1DN) and an additional hypomethylated CpG site
(BIRC4BP) were implemented in a model to predict donor age. This Epigenetic-Aging-Signature was tested on a validation
group of eight independent datasets corresponding to several cell types from different tissues. Overall, the five CpG sites
revealed age-associated DNA-methylation changes in all tissues. The average absolute difference between predicted and
real chronological age was about 11 years. This method can be used to predict donor age in various cell preparations - for
example in forensic analysis.

cytosines — and many studies demonstrated the
occurrence of age-associated modifications in the DNA-

INTRODUCTION

Aging has different consequences in different tissues - it
results for example in wrinkle formation of dermis,
graying of epidermally-derived hair, loss of bone
formation, myeloid bias of blood, and compromised
function of the immune system [1]. Despite this wide
spectrum of tissue specific age-associated changes the
underlying molecular mechanisms might be related.
Aging has been associated with accumulation of cellular
defects such as DNA damage and telomere shortening.
On the other hand, there is accumulating evidence that
aging rather resembles a developmentally regulated
process which is tightly controlled by specific
epigenetic modifications [2-8].

Among epigenetic modifications, DNA methylation is
best characterized. CpG dinucleotides in the
mammalian genome can be enzymatically methylated at

methylation pattern [9-12]. Recently, this research
gained further momentum by available technologies
such as microarray platforms [13]. Among these the
HumanMethylation27 BeadChip facilitates simul-
taneous analysis of 27,578 CpG sites which are
associated with promoter regions of more than 14,000
annotated genes [14]. Previously, we used this
microarray for analysis of age-associated DNA
methylation changes in mesenchymal stem cells (MSC)
and fibroblasts [4,15,16]. Despite in vitro culture for
several weeks these DNA-methylation profiles still
reflected age-associated changes that relate to their
donors, but this regulation differed markedly between
MSC and fibroblasts indicating cell type specificity.
Many other authors have used this platform to
determine age-associated changes in primary tissues
including dermis [17], epidermis [17], blood [11,18],
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cord blood [19,20] and cervical smear [21]. Recently,
Bocklandt et al. described a predictor of age for saliva
samples which was generated by a dataset of 34 male
twin pairs [22]. Based on three CpG sites associated
with the genes neuronal pentraxin II (NPTX2), EDAR-
associated death domain (EDARADD) and target of
mybl (chicken)-like 1 (TOMIL1) they were able to
predict donor age in independent saliva samples [22].
Overall, age-associated DNA-methylation changes are
highly reproducible but most of them seem to resemble
a tissue-specific phenomenon [12,23].

On the other hand, some age-associated DNA-
methylation changes do not appear to be tissue specific:
Teschendorff and co-workers have identified a specific
subset of 69 CpGs which are associated with polycomb
group protein target genes and which revealed age-
associated changes — notably, they described similar
modifications in seven independent data sets including
normal and cancerous tissues as well as cultured MSC
[21]. Furthermore, 10 CpG sites were overlappingly
identified upon aging in saliva and blood samples
[11,22]. It is conceivable, that such non-cell type
dependent age-associated changes are of central
relevance for the underlying process - and they might
facilitate age-predictions in heterogeneous cell
preparations. Therefore, we have combined several
published DNA-methylation datasets to elaborate an
Epigenetic-Aging-Signature which can be used for age-
predictions across different tissues.

RESULTS AND DISCUSSION
Selection of DNA-methylation datasets

For this study, we have combined several datasets
which were retrieved from public data repositories. We
have only considered datasets that 1) used the same
Infinium HumanMethylation27 BeadChip platform, 2)
were generated with freshly isolated cells to exclude
effects by culture expansion, 3) used non-cancerous
material since malignant transformation might influence
age-related changes, and 4) provided reliable
information about donor age. DNA-methylation datasets
of 13 different cell types or tissues were used: 5 datasets
were implemented as a training-set for identification of
the Epigenetic-Aging-Signature and 8 datasets were
reserved for subsequent validation (table 1). For each of
the 27,578 CpG sites the percentage of DNA-
methylation was provided as beta value ranging from 0
to 1. Overall, the distribution of DNA-methylation level
was similar in all samples of the training-set as
determined by quantile analysis of beta-values. There
was no clear association between global methylation
level and donor age (Figure 1A). Several studies

demonstrated that the global DNA-methylation level
decreases upon aging [24-26]. However, the
HumanMethylation27 BeadChip represents specific
CpG sites which are predominantly associated with
promotor regions and this might be the reason why
global loss of DNA-methylation was not observed.

Various CpG sites reveal age-associated hyper-
methylation

Subsequently, we used Pavlidis Template Matching
(PTM) [27] to identify CpG sites which correlated in
their methylation level with donor age across the five
datasets of the training-group. A template was specified
according to the donor age (relative values between 0
and 1) and the beta-values of each CpG site were then
compared to this template to identify CpG sites with
either continuous hypermethylation or hypomethylation
upon aging (Pearson correlation). Initially, we used very
stringent parameters with a regression coefficient R of
more than 0.6 (corresponding to a p-value <10™°). 19
CpG sites passed this criterion — notably, all of them
revealed hypermethylation upon aging (Figure 1B).
These methylation changes might be influenced by the
varying distribution of samples across age groups. To
analyze if the 19 CpG sites also revealed age-associated
changes within individual datasets we performed PTM
analysis for each dataset separately and in most cases
this resulted in a similar correlation (Table 2).
Subsequently, we used a less stringent cut-off of R > 0.4
(p-value  <107)  resulting in  age-associated
hypermethylation at 431 CpG sites whereas 25 CpG
sites were hypomethylated. This is in line with previous
reports that demonstrated predominant
hypermethylation at specific sites upon aging whereas
hypomethylation might be less tightly regulated
[11,21,22]. Taken together, several CpG sites revealed
continuous age-associated methylation changes across
all tissue types.

Identification of the Epigenetic-Aging-Signature

Next, we selected a subset of CpG sites to be integrated
into the Epigenetic-Aging-Signature. Therefore, we have
chosen CpGs which correlated with donor age across the
whole training-set as well as in individual datasets.
Another criterion was the variation in DNA-methylation
level between young and elderly donors as larger changes
are less prone to technical noise. Comparison of age-
predictions in the training set led us to four
hypermethylated CpG sites corresponding to tripartite
motif-containing 58 (TRIMSS8; cg07533148), KCNQI1
downstream neighbor (KCNQIDN; ¢g01530101),
neuronal pentraxin I (NPTX2; c¢gl279989) and
glutamate receptor ionotropic AMPA 2 (GRIAZ2;
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cg25148589). We reasoned that predictions might be
more robust by additional consideration of a
hypomethylated CpG site. Therefore, we have also
included XIAP associated factor-1 (BIRC4BP;
cg23571857) despite a lower correlation coefficient (R =
-0.45; p = 9.76 x 10'8). Selection of CpG sites was
irrespective of gene function as it has been shown, that
site-specific methylation changes are hardly associated

with differential gene expression [4,15,18]. Furthermore,
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we observed age-associated hyper- and hypomethylation
in the same promoter region — for example in
KCNQIDN (Figure 2). Notably, the epigenetic age
predictor for saliva samples by Bocklandt and co-workers
also included the CpG site corresponding to NPTX2 [22]
and TRIMS58 as well as GRIA2 were also included in
their 88 age-related CpG sites. This overlap is remarkable
since these authors used different bioinformatic methods
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Figure 1. Age-associated DNA-methylation changes at specific CpG sites across different tissues. Quantile analysis of

beta-values in the 5 datasets of the training-group comprising: dermal cells (predominately fibroblasts),

epidermal cells

(keratinocytes), cervical smear cells (epithelial cells), and blood (monocytes and T-cells). The global distribution of DNA-methylation
did not differ markedly with age or across different tissues (A). Pavlidis Template Matching (PTM) identified 19 CpG sites with age-

associated hypermethylation (R > 0.6; p-value < 10™) (B).
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Figure 2. Age-associated hypermethylation and hypomethylation within KCNQ1DN. Schematic presentation
of the promoter region with six CpG sites represented on the HumanMethylation27 BeadChip. Beta-values of three
adjacent CpG sites were plotted against donor age.

Table 1. DNA-methylation datasets used in this study

Cell type Tissue Accession Sample Age range Ref.
number number (median age)

Training group:

fibroblasts dermis E-MTAB-202 20 18 - 72 yrs (44 yrs) [17]
keratinocytes epidermis E-MTAB-202 30 19 - 72 yrs (47 yrs) [17]
epithelial cells cervical smear GSE20080 30 26 - 43 yrs (32 yrs) [21]
CD4" T-cells peripheral blood GSE20242 24 16 - 69 yrs (35 yrs) [11]
CD14" monocytes peripheral blood GSE20242 26 16 - 69 yrs (37 yrs) [11]
Validation group:
leucocytes; buccal saliva GSE28746 71 21 - 55 yrs (35 yrs) [22]
epithelial cells
leucocytes peripheral blood GSE20236 93 49-74 yrs (63 yrs) [11]
CD34" HPC cord blood, E-MTAB-487 12 0-41 yrs (10 yrs) [19]
peripheral blood
lymphocytes peripheral blood GSE23638 24 2 - 35 yrs (14 yrs) [18]
CB MNC cord blood GSE27317 168 0 yrs (0 yrs) [20]
whole blood peripheral blood GSE19711 274 52 - 78 yrs (65 yrs) [21]
breast tissue breast organoid GSE31979 15 46 - 68 yrs (53 yrs) [28]
buccal epithelial saliva GSE25892 109 15 yrs (15 yrs) [29]
cells
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For each CpG site we performed a linear regression
analysis: the beta-values were plotted against donor age
for all samples of the training-set (Figure 3A). Based on
these equations we could inversely calculate donor age
for each given beta-value. The mean of the five
predictions of the Epigenetic-Aging-Signature was then
used to estimate donor age. When we combined all five

A

CpG sites, the predictions correlated with an average
precision of + 9.3 years (Figure 3B). Alternatively, we
focused only on three CpG sites with the most
significant age-associated correlation (NPTX2, GRIA2
and KCNQI1DN) — even this smaller subset facilitated
an average precision of £ 10.3 years in the training-set
(Figure 3C).
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Figure 3. Age-associated DNA-methylation changes at five CpG sites in the training-group. Methylation level
of five selected CpG sites plotted against donor age. Regression coefficients and equations of linear regression are
provided (A). Beta-values of the training group samples were used for the linear regression models to predict the donor
age (R’= 0.65) (B). Alternatively, the signature was narrowed down to three CpG sites (R%= 0.56) (C).
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Validation of the Epigenetic-Aging-Signature

The Epigenetic-Aging-Signature was then tested on the
eight independent datasets of the validation-group (Table
1). To this end, we have only considered the five beta-
values which corresponded to the CpG sites of the
Epigenetic-Aging-Signature. Each of these CpG sites
revealed age-associated changes in analogy to the
training-set (Figure 4A). The beta-values were then used
for the linear-regression models of the training-group to

estimate the donor age. The predictions for donor age in
the validation-group also correlated with the real age with
an average precision of = 12.7 years (Figure 4B). These
predictions were even improved when we focused on the
three most significant CpG sites of the signature
(KCNQIDN, NPTX2 and GRIA2) — then the average
precision was = 11.4 years (Figure 4C). For some
individual datasets the precision was even less than 6
years. Gender-related differences in the age-predictions
were not observed using this signature (data not shown).
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Figure 4. Age-predictions with the Epigenetic-Aging-Signature for the validation group. Age predictions were
tested with eight independent datasets. Beta-values of the five CpG sites were retrieved and plotted against donor age
(A). The beta-values were used for the linear regression models of the training-set to predict the age of the donors
based on 5 CpG sites (R>=0.68) (B) or 3 CpG sites (R’=0.74) (C) of the Epigenetic-Aging-Signature. PB = peripheral blood;
CB = cord blood; HPC = hematopoietic progenitor cells; MNC = mononuclear cells.
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Table 2. CpG sites with the most significant age-associated changes.

Reference Gene Age-associated R-values
ID
all samples  dermis epidermis cervical CD14" CD4"
of training smear monocytes  T-cells
group
cg06572160 KCNC3 0.70 0.73 0.87 0.24 0.41 0.50
cg07533148 TRIMSS 0.69 0.68 0.76 0.35 0.38 0.52
cg20616414 WNK2 0.67 0.66 0.87 0.31 0.32 0.33
cgl7861230 PDEA4C 0.67 0.92 0.91 0.42 0.38 0.22
cg25302419  CTNND2 0.67 0.65 0.68 0.33 0.59 0.55
€g25802093 SPAG6 0.64 0.63 0.82 0.34 0.31 0.72
cg06458239 ZNF549 0.63 0.88 0.85 0.15 -0.13 0.45
cg27009703 HOXA9 0.63 0.66 0.90 0.29 0.30 0.56
cg02844545 GCM2 0.63 0.75 0.77 0.35 0.66 0.47
cg01683883 CMTM2 0.63 0.83 0.80 0.17 -0.18 0.21
cg01530101 KCNQIDN 0.63 0.91 0.67 0.16 0.33 0.45
cg12799895 NPTX2 0.62 0.78 0.75 0.04 0.46 0.35
cg21907579 TBXS 0.62 0.74 0.73 0.25 0.21 0.35
cg00107187  FLJ42486 0.62 0.89 0.65 0.25 0.45 0.44
cgl6313343 BRF1 0.62 0.79 0.74 0.17 -0.12 0.25
cg25148589 GRIA2 0.62 0.90 0.91 0.52 0.25 0.34
€g23290344 NEF3 0.61 0.68 0.71 0.26 0.44 0.52
cg02681442 FOXGIB 0.60 0.68 0.79 0.08 0.35 0.41
cg03158400 FAM3B 0.60 0.71 0.70 0.37 0.13 0.66
cg23571857  BIRC4BP -0.45" -0.66 -0.84 -0.18 -0.11 -0.40

Pavlidis Template Matching was used to identify CpG sites with the most significant age-associated changes. 19
CpG sites revealed hypermethylation with a Pearson correlation coefficient R of > 0.6 in all samples of the
training group. Significant age-associated correlations were also observed in most individual datasets. CpG sites

of the Epigenetic-Aging-Signature are indicated

(cg23571857) was included in the predictor.

Epigenetic changes are a hallmark of aging - but it is yet
unclear how these modifications are regulated [6].
DNA-methylation changes have been shown to be
enriched in target genes of polycomb complexes [21] or
bivalently modified DNA [11]. Recently, we have

in grey.

*One additional hypomethylated CpG site

demonstrated that long-term culture related DNA-
methylation changes in MSC are associated with
repressive histone marks [2]. Thus, it may be speculated
that protein complexes which are associated with the
histone code are involved in this process.
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CONCLUSION

In this study we have identified an Epigenetic-Aging-
Signature consisting of five CpG sites which facilitates
predictions of donor age across different tissue types.
This method can for example be used in forensic
analysis to estimate donor age of unknown tissue
specimen including blood. It has to be noted, that
chronological age is not identical with biological age
and it is conceivable that some of the discrepancy
between predicted and real age can be attributed to this
difference — further research might facilitate
determination of the biological age for personalized
medicine.

METHODS

DNA-methylation profiles used in this study. In this
study we have considered all at the time publically
available datasets with the Infinium
HumanMethylation27 BeadChip platform in the public
repositories Gene Omnibus (http://www.ncbi.nlm.nih.
gov/geo, GPL  8490) and Array  Express
(http://www.ebi.ac.uk/arrayexpress; A-GEOD-8490).
After literature search we decided to include the
following 13 datasets for subsequent analysis which
were divided in a training-group for identification of the
Epigenetic-Aging-Signature and a validation-group.

The authors of these important primary studies have to
be acknowledged: Gronniger and co-workers isolated
keratinocytes from epidermal suction blisters and
dermal fibroblasts from punch biopsies (E-MTAB-202)
[17]. Epithelial cells from cervical smear samples (19
HPV negative controls, 11 HPV positive controls) were
collected and analysed as described by Teschendorff et
al. (GSE20080) [21]. Leucocytes, CD4" T-cells and
CD14" monocytes were isolated from fresh venous
whole blood as described by Rakyan and co-workers
(GSE20242 and GSE20236) [11]. Saliva samples
comprising buccal epithelial cells and leucocytes were
collected as described in detail by Bocklandt et al.
(GSE28746) [22]. CD34" hematopoietic progenitor
cells (HPC) were isolated from cord blood and from G-
CSF mobilized peripheral blood as described by Bocker
and colleagues [19] (E-MTAB-487; monocytes and
granulocytes were not included to keep the cell
specification ~ homogeneous).  Peripheral ~ blood
lymphocytes were isolated from whole blood as
described in Chen et al. (GSE23638) [18]. Mononuclear
cells were harvested by centrifugation of whole blood
isolated from umbilical cord blood (GSE27317) [20].
Teschendorff and co-workers analyzed whole blood
samples of  healthy  postmenopausal = women
(GSE19711) [21]. Normal breast organoids prepared by

enzymatic digestion of reduction mammoplasty
specimens were analyzed by Fackler et al. (GSE31979)
[28]. Essex and colleagues determined DNA-
methylation profiles in saliva samples of fifteen-years-
old adolescents (GSE25892) [29]. Age ranges and
sample numbers are summarized in Table 1.

Combination of different datasets. Beta-values of the
different datasets were combined by the reference ID of
the Infinium HumanMethylation27 BeadChip platform
(Illumina Inc., San Diego, CA, USA). These beta-values
represent the percentage of methylation at each of the
27,578 CpG sites — they are continuous variables
between 0 and 1 and represent the intensity ratio of the
methylated bead to the combined locus intensity.
Background normalized raw data of these beta-values
were determined with the BeadStudio software
(Illumina) and retrieved from the public data
repositories Gene Onmibus and Array Express. Initially
we considered various normalization regimen including
quantile normalization to minimize chip effects [30]. On
the other hand, it is expected that methylation patterns
vary between different cell tissues and this would be
masked by such normalization regimen. Beta-values are
less affected by normalization than the relative gene
expression changes in mRNA microarray data.
Furthermore, non-normalized beta-values are usually in
line with validation experiments by pyrosequencing
[4,14,15]. Therefore, we decided to use non-normalized
raw-data for comparison over all data-sets. The
combined data table of the training-set was
subsequently analyzed using the MultiExperiment
Viewer (MeV6.2) [31].

Identification of the Epigenetic-Aging-Signature. To
identify CpG sites which reveal continuous age-
associated hypermethylation or hypomethylation we
performed Pavlidis Template Matching (PTM) [27]
with the MultiExperiment Viewer (MeV6.2) [31]. Each
sample of the training-set was matched to a template
with corresponding donor age. The combined dataset
was then searched for CpG sites which correlated
linearly in their beta-values with the donor age of the
template (Pearson correlation) — initially we used very
stringent criteria with R > 0.6. In analogy, each dataset
was analysed separately and the overlap of age-
associated changes supported the notion that they occur
in different tissues. Based on this analysis, we selected
five CpG sites which revealed the best age-associated
correlation across all 5 datasets of the training-set and
relevant variation in the beta-values. For simplicity they
were termed by their corresponding genes: TRIMSS
(cg07533148), KCNQIDN (cg01530101), NPTX2
(cgl1279989), GRIA2 (cg25148589) and BIRC4BP
(cg23571857).
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For each of these CpG sites we performed a linear
regression analysis of beta-values versus donor age with
EXCEL 2007 (Microsoft). These linear regression
models were then used for age-predictions in the datasets
of the training-group as well as for the validation-group:
the five CpG sites (i) were inversely used to predict the
age () by inserting the specific DNA-methylation levels
of the corresponding CpG site (f5).

Ni=(i-4)/B;

Where A4 is the Y-axis intercept and B is the slope of the
corresponding CpG site in the training group (Figure
3A). The mean of the predictions of the five individual
CpG sites of the Epigenetic-Aging-Signature was
subsequently used to predict donor age.
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