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Abstract: Sarcopenia refers to age-related loss of muscle mass and function. Several age-related changes occur in skeletal
muscle including a decrease in myofiber size and number and a diminished ability of satellite cells to activate and
proliferate upon injury leading to impaired muscle remodeling. Although the molecular mechanisms underlying sarcopenia
are unknown, it is tempting to hypothesize that interplay between biological and environmental factors cooperate in a
positive feedback cycle contributing to the progression of sarcopenia. Indeed many essential biological mechanisms such
as apoptosis and autophagy and critical signaling pathways involved in skeletal muscle homeostasis are altered during
aging and have been linked to loss of muscle mass. Moreover, the environmental effects of the sedentary lifestyle of older
people further promote and contribute the loss of muscle mass. There are currently no widely accepted therapeutic
strategies to halt or reverse the progression of sarcopenia. Caloric restriction has been shown to be beneficial as a
sarcopenia and aging antagonist. Such results have made the search for caloric restriction mimetics (CRM) a priority.
However given the mechanisms of action, some of the currently investigated CRMs may not combat sarcopenia. Thus,
sarcopenia may represent a unique phenotypic feature of aging that requires specific and individually tailored therapeutic
strategies.

INTRODUCTION Sarcopenia is a major public health problem affecting
approximately 25% of people under the age of 70 and
Aging is a multi-factorial process affecting every organ 40% of people age 80 years and older [7]. In 2000,
of the body. In the past, aging research has primarily sarcopenia-related  healthcare  expenses  totaled
focused on neurodegeneration and loss of bone mass. approximately $18.5 billion in the United States [8].
Not much attention has been given to sarcopenia until However, the projected aging-related expenses are
recently. Sarcopenia refers to the physiological loss of expected to exponentially increase because older people
skeletal muscle mass and function during aging [1]. are the fastest growing population in the US [9] with the
Several age-related changes occur in skeletal muscle number of individuals over 60 years of age doubling
including a decrease in myofiber size and number and a over the next 40 years [10].
diminished ability of satellite cells to activate and
proliferate upon injury leading to impaired muscle Considering the impact of sarcopenia on the well-being
remodeling [2, 3]. The progressive loss of muscle mass of older adults and the healthcare system in general, it is
poses health risks for older adults that lead to a decrease critical to identify widespread therapeutic strategies to
in physical activity and a rise in the incidence of falls and maintain skeletal muscle homeostasis and repair. While
related fractures. Rehabilitation time is often prolonged strength and aerobic exercise have been documented to
after injury, which in turn extends the duration of bed attenuate [11] and even reverse sarcopenia [12, 13], a
rest resulting in disuse atrophy, an additional variable recent study reported only 2% of older subjects
that is exaggerated in the aging population [4-6] thus exercised on a regular basis [14]. Therefore, there is a
interfering with a successful recovery. great need for a more prevalent intervention to combat
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sarcopenia, in particular one that accounts for the
interplay of biological and environmental factors would
be a preferred because they both contribute to the
vicious cycle that drives sarcopenia. Recent studies
have highlighted caloric restriction (CR) and caloric
restriction mimetics (CRM) as potential mechanisms to
combat aging and sarcopenia. This article summarizes
the current knowledge about the effects of these
therapies on aging skeletal muscle.

Biological Factors

The molecular mechanisms underlying sarcopenia are
not fully elucidated. However several lines of evidence
have connected many different age-related changes to
the resulting decrease in muscle mass and function:
increases in apoptosis and reactive oxidative species
(ROS); decreases in autophagy; modulation of signaling
pathways involved in skeletal muscle homeostasis and
excitation-contraction (EC) uncoupling. All of these
factors appear to contribute to the progression of
sarcopenia albeit no single factor can independently
account for the aging-related changes occurring in
skeletal muscle.

Factors Impacting Skeletal Muscle Structure
Histologically, the age-related loss of muscle mass is
characterized by a decrease in muscle fiber size and
number with a preferentially loss of type II fibers [15,
16]. Due to the impaired ability of skeletal muscle to
remodel, the loss of myofibers can be accompanied by
the infiltration of adipose tissue, inflammation and/or
fibrotic tissue [17-21]. Other markers of impaired
remodeling such as variation of fiber size, increase in
centralized nuclei and an increase in atrophic, angulated
fibers are often present [22]. Proposed mechanisms for
the loss of muscle size and number including increased
ROS, mitochondrial DNA (mtDNA) mutations,
impaired autophagy and increased apoptosis appear to
function synergistically to contribute to the
pathogenesis of sarcopenia.

A progressive decline in mitochondria function leads to
an increase in the formation of oxidative stress and ROS
production. The increase in ROS leads to mtDNA
deletions and mutations, macromolecular oxidation,
electron transport chain (ETC) dysfunction, cellular
senescence and cell death [23-25]. Oxidative damage to
proteins may alter their structure and function leading to
the formation of aggregates. Oxidized proteins may be
ubiquitinated in order to be targeted by the proteosome
for degradation. However during aging of skeletal
muscle, there is an increase in the accumulation of
oxidized proteins, attributed to a decline in the activity
of the proteosome [26]. Conversely, recent data report

an increase in the number of proteosomes with normal
degradative capacity, suggesting enhanced proteosome
activity contributes to muscle loss [27]. Therefore, the
role of the ubiquitin-proteosome activity in sarcopenia
requires further clarification. Nonetheless under normal
physiological conditions, the cell undergoes autophagy
to protect itself from accumulation of protein
aggregates, but there is a decline in the activity and
efficiency of autophagy with age. Consequently there is
an intracellular accumulation of protein aggregates,
impaired autophagy [28], increased apoptosis and
oxidative stress [28] associated with impaired energy
production due to damaged mitochondria [28-30].

With age, alterations in the expression of autophagy-
related genes have been reported. Studies have shown
an increase in Beclin-1 and a decrease in LC3, LAMP-
2, Bnip-3 and Gabarapl [28, 31]. These changes lead to
impaired autophagy with a decline in its degradation
activity causing post-mitotic cells to accumulate
biological garbage.  Furthermore, the process of
autophagy is necessary to maintain skeletal muscle
mass. Skeletal muscle specific inhibition of autophagy
using mice deficient in Atg7 has resulted in a phenotype
similar to sarcopenia: muscle atrophy, loss of force,
accumulation of abnormal mitochondria, protein
aggregates, oxidative stress and apoptosis [32, 33].

Accelerated apoptosis, as seen in aging, likely also
contributes to the loss of myofibers observed in
sarcopenia. Apoptosis could be a consequence of the
impaired autophagy and abnormal mitochondria.
Studies show an increase in mRNA, protein and/or
activity levels of many pro-apoptotic markers including
the BCL-2 family, caspases, Apaf-1, XIAP and
cytochrome c¢ [34, 35]. These increases are
accompanied by an increase in apoptotic DNA
fragmentation [28, 34] and a compensatory up-
regulation of anti-apoptotic factors [35-37]. Due to the
multinucleated nature of skeletal muscle, it can undergo
individual myonuclear apoptosis or complete cell death.
The phenomenon of myonuclear apoptosis supports the
nuclear domain hypothesis that states a single nucleus
controls a defined cytoplasmic area.  Under this
hypothesis, the removal of myonuclei is necessary for
muscle atrophy to occur [6, 38].

Age-related changes also occur in a number of critical
signaling pathways that further promote the process of
aging. Although there are several signaling pathways
linked to sarcopenia, we focus our discussion on the
canonical and non-canonical transforming growth
factor-B (TGF-B) cascade, Wnt signaling and the
insulin-like growth factor-1 (IGF-1)/Akt/mammalian
target of rapamycin (mTOR) pathways.
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Figure 1. Synergistic Interplay between Biological and Environmental Factors Contribute to Sarcopenia. With
an increase in age, people are subjected to environmental changes such as inactivity and malnutrition which leads to an
increased susceptibility to injury and disuse atrophy. When skeletal muscles incur such challenges, alterations to signaling
pathways promote inefficient muscle regeneration and protein degradation resulting in a loss of muscle mass. This loss of
muscle mass and other biological changes are concurrent with a loss of muscle function.

Loss of muscle mass in sarcopenia has been linked to
the modulation of the canonical (Smad-dependent) and
non-canonical (Smad-independent) TGF-f signaling
cascades [3]. An increase in circulating TGF-B1 and
phosphorylated Smad3 levels contribute to the
formation of connective tissue within the extracellular
matrix (ECM). This interferes with the satellite cell
niche, creating an environment that inhibits satellite cell
activation and proliferation [3, 39], impairs myocyte
differentiation [39, 40] and leads to the formation of
fibrotic tissue in response to skeletal muscle injury [41].
There are conflicting data concerning the activation of
the non-canonical TGF-B mitogen-activated protein
kinase (MAPK) pathway; it has been reported to be up-
regulated, down-regulated and unchanged in aged
skeletal muscle [5, 42, 43]. Furthermore, MAPK has
been shown to participate in a variety of functions includ-
ing muscle regeneration, remodeling, and contractions.

Although the exact role and concentrations of MAPK
signaling in sarcopenia requires more research, it has
been associated with creating a ‘stress-like’ condition in
which aged muscle is constantly exposed when up-
regulated [42] and contributing to the impaired
regeneration [5].

Wnt signaling has been shown to be involved in satellite
cell proliferation and differentiation in skeletal muscle
regeneration [44, 45]. It has been suggested that a
temporal switch from notch to Wnt signaling occurs
during the onset of differentiation[44], suggesting that
timing and tissue homeostasis of these signaling
pathways are important for efficient regeneration.
Therefore impaired regeneration in aged skeletal muscle
could be associated with an aging-related increase in the
activation of Wnt signaling, evident by increased levels
of Axin7 and B-catenin and a decrease in phospho-
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rylated GSK3p in non-injured aged skeletal muscle cells
and satellite cells and myogenic progenitor cells upon
injury [44, 46]. Furthermore, the sustained activation of
Whnt signaling in skeletal muscle is associated with stem
cell aging and the transformation of myogenic to
fibrotic tissue [46].

IGF-1 is a growth factor whose activation is critical in
mediating the growth of skeletal muscle and its levels
decrease with age [47]. Several lines of evidence have
shown that the local administration of IGF-1 directly
into skeletal muscle prevents the age-related loss of
muscle mass [48], function [47] and regeneration [48].
Akt is a downstream effector of the IGF-1 pathway.
Akt can induce protein synthesis through the
phosphorylation and activation of mTOR and inhibit
protein degradation through the phosphorylation and
inactivation of FoxO3a. mTOR signaling is critical for
muscle homeostasis, all stages of regeneration [49-51]
and muscle hypertrophy [52-54]. FoxO3a signaling
induces the transcriptional activation of atrogenes and
autophagy-related  genes  resulting in  protein
degradation. Interestingly, there are discrepancies in the
expression levels of atrogenes, MuRF-1 and atrogin-1,
in sarcopenia [31, 55, 56]; although they have been
linked with acute conditions of muscle atrophy [56, 57].
Thus, this pathway likely does not play a primary role
in sarcopenia because its modulation depends on sex,
age and muscle fiber type [58]. However, it is well
documented that the loss of muscle mass during disuse
as the result of inactivity and bed rest in young and aged
skeletal muscle is associated with a reduction in the
Akt/mTOR pathway [59-61]. Notably, sarcopenic
muscle lacks the ability to sufficiently recover from
disuse-induced atrophy as compared to young muscle
[62]. Taken together, the existing data suggest that the
IGF-1/Akt/mTOR pathway does not play a primary role
in the process of sarcopenia, and that other regulators
will need to be identified as possible modulators of
sarcopenia.

Factors Impacting Skeletal Muscle Function

As a consequence to the loss of skeletal muscle mass,
there is a 20-40% decline in muscle function [63]. This
decline in function has been linked to several factors
including the loss of muscle mass, apoptosis and
impaired energy production due to damaged
mitochondria as discussed above. However, none of
those factors have sufficiently accounted for the decline
in muscle function. Evidence has shown that the Ca®"
dependent EC coupling process is impaired with age
and contributes to the decline in function [64].

Studies have shown that there is a decrease in the
number of dihydropyridine receptors (DHPR) resulting

in an increase in the amount of DHPR-unlinked
ryanodine receptors (RyR1) during aging. Therefore
EC uncoupling occurs and results in impairment of the
voltage-gated SR Ca®’ release mechanism and a decline
in contraction force [65]. Furthermore, the increase in
oxidative stress causes nitrosylation and oxidation of
the RyR1 complex. The defective RyR1 complex
causes an intracellular Ca®" leak that further disrupts
mitochondria structure and function [66]. EC
uncoupling and leaky RyR1 likely contribute to the loss
of muscle function in sarcopenia.

Environmental (lifestyle) Factors

Nutrition

Preservation of skeletal muscle mass is achieved by
maintaining a homeostatic balance between protein
synthesis and degradation [67]. During aging there is
impaired protein metabolism associated with a decline
in total food intake (anorexia of aging) [68]. This leads
to deprivation of amino acids which blocks protein
synthesis in older individuals. Furthermore, the anorexia
of aging may lead to malnutrition, which is linked to
modulation of different hormones including
testosterone, leptin, growth hormone, and IGF-1 that
contribute to muscle wasting [69].

Activity

The decrease in muscle mass and strength has
significant functional consequences for the elderly
population. Functional impairment defined as difficulty
in mobility performance including walking, stooping
and standing up from a chair and physical disability
defined as difficulty with performing daily activities
such as chores and cooking occurs 2 times and 3 times
more likely in men and women, respectively, with
sarcopenia when compared to those considered to have
normal skeletal muscle index [14].

The decline in physical activity increases susceptibility
to disuse atrophy, a frequent problem for individuals of
all ages, but a particularly challenging one for older
adults. When skeletal muscle is subjected to disuse for
a prolonged period of time (i.e. bed rest), muscle
atrophy occurs [1]. This atrophic response is a
completely reversible process in the younger population
[1]; however as a result of the physiological process of
aging, humans are known to exhibit an exaggerated
atrophy in response to disuse and an inability to rebuild
muscle mass after immobilization [62, 70]. Studies
performed in human subjects reported a 30% loss of
skeletal muscle mass after only two weeks of
immobilization in older men as compared to a loss of
less than 2% in young men, and only 2.5% of the loss
muscle repopulated [S].  Research has shown that
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immobilization in aged subjects leads to a loss of
muscle cells as opposed to smaller cells observed in
young muscle [60, 71].

Injury

Advanced age, muscle weakness, lack of physical
activity and functional limitations are risk factors that
increase the incidence of falls and related fractures in
older persons. Twenty to thirty percent of elderly
people who fall sustain injuries that further reduce
mobility and independence, thereby increasing the
sedentary lifestyle and bed rest [9]. Furthermore, the
damage to the skeletal muscle upon fractures and the
impaired regeneration due to modulation of signaling
pathways leads to the replacement of skeletal muscle
with connective tissue and a further decline in function
and activity [60].

Therapeutic Interventions: Aging-focused

The pathogenic etiology of sarcopenia is complex,
characterized by the contribution of multiple factors
[72]. It is reasonable to hypothesize that both biological
and environmental factors contribute to its progression
(Figure 1). Due to its multi-factorial nature, researchers
have taken different avenues to modulate phenotypes to
combat sarcopenia. Recent advances in anti-aging
regimens have generated interest in the ability of these
strategies to slow the progression of sarcopenia.
Despite the complexity of aging and sarcopenia, it has
been hypothesized that the anti-aging regimens should
also benefit sarcopenia.

Caloric Restriction

One intervention that has been shown to attenuate
sarcopenia is CR, the reduction in caloric intake without
malnutrition [73]. The effects of CR on sarcopenia
have been extensively studied using different model
organisms, skeletal muscle groups and various dietary
restrictions [30, 74-76]. It slowed down the
progression of sarcopenia by decreasing the amount of
myofiber atrophy and loss [75-78]. It also maintained
the specific force and size of type II fibers [21].
Furthermore, it attenuated skeletal muscle remodeling
associated with sarcopenia by decreasing the amount of
fibrotic tissue, variation in fiber size, centralized nuclei
and angulated fibers [21, 22]. This phenotype was
achieved through the modulation of different biological
factors associated with sarcopenia.

The reduction of caloric intake alleviated the burden of
ROS-related consequences by reducing oxidative
damage sustained to the mitochondrial proteins and
lipids, the generation of superoxide anions [79], and the

accumulation of deleted mitochondrial genomes and
mitochondrial enzyme abnormities with age [75]. It also
prevented the decline in autophagy by increasing the
expression of Atg proteins and LC3 and LAMP2 genes
[28]. The trypsin-like proteosome activity was sustain-
ed but did not result in a decrease of protein aggregates
[26]. Furthermore, the increase in apoptosis was
attenuated by a reduction in the levels of intrinsic and
extrinsic apoptotic signals including the caspases, XIAP
and AIF [35, 36, 80]. CR also prevented the age-related
decline in muscle function [81] by maintaining the ratio
of DHPR and RyR1 and preventing uncoupling [82].

CR has been proven to correct multiple detrimental
effects of aging on skeletal muscle as well as other age-
related diseases and longevity. However, implementing
CR as a valuable therapeutic avenue for sarcopenia and
aging consists of numerous problems [83]. One
particular problem is determining the exact time frame
for starting CR. When started too early in life, it may
cause developmental problems and if started too late,
benefits may not be achieved [84]. Furthermore, CR,
started late in life could contribute to the anorexia of
aging and mortality [85]. Nonetheless the benefits of
CR on aging and sarcopenia have lead to the search for
CRMs.

Caloric Restriction Mimetics

CRMs are compounds that allow individuals to eat ad
libitum while benefitting from the effects of CR.
Ingram et al. proposes that potential CRM should meet
the following criteria: (i) it mimics the metabolic,
hormonal, and physiological effects of CR; (ii) it does
not significantly reduce long-term food intake; (iii) it
activates stress response pathways observed in CR and
provides protection against a variety of stressors; and
(iv) it produces CR-like effects on longevity, reduction
of age-related disease and maintenance of function [86].

There are four main pathways that are the target for the
development of CRMs: insulin/insulin-like growth
factor 1 (IGF-1), sirtuin 1 (SIRT1), target of rapamycin
(TOR), and 5’ adenosine monophosphate-activated
protein kinase (AMPK) [87]. The majority of these
pathways have been shown to extend lifespan and
health span through pharmacological and genetic
manipulation cite [88-91]. Common compounds used
to manipulate these pathways include metformin,
resveratrol and rapamycin.

Metformin is a biguanide drug used to treat type-2
diabetes, but the primary mechanism of hypoglycemic
action is unknown [92]. However, it has been shown to
inhibit the complex 1 of respiratory chain complex of
the mitochondria as well as causing an increase in
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peripheral glucose utilization in skeletal muscle [93].
Evidence has shown that metformin does not cause
glucose uptake in skeletal muscle in non-diabetics [94,
95]. Despite the conflicting information on the ability
of metformin to extend lifespan [96, 97], it is a
candidate CRM. It is proposed to affect the AMPK,
sirtuins, and TOR pathways [98]. Whether metformin is
a valuable target for sarcopenia is questionable. In
particular, its inhibitory effect of the mTORCI1
signaling [99] may interfere with myogenesis and
maintenance of muscle mass.

Resveratrol is a small polyphenol in fruits and red wines
at low concentrations[100]. It has been suggested to
exhibit antioxidant and cardioprotective properties
[100]. It has been identified as a CRM due to its
potential ability to increase SIRT1 protein levels [101].
However, reports have shown that it may not directly
up-regulate SIRT [102] and that its exact molecular
mechanism is unknown. Resveratrol is known to
activate and inhibit many different enzymes including
AMPK [103], which is another pharmacological target
for CR [104, 105]. Given the ability of resveratrol to
either directly or indirectly affect sirtuins, AMPK and
autophagy [103, 106, 107], it seems like a promising
candidate to treat sarcopenia. Moreover, resveratrol
was shown to be protective against oxidative stress
associated with loading, unloading and aging in skeletal
muscle [106, 108]. However, it did not attenuate the
age-related decline in muscle mass or function
associated with sarcopenia in rodents over a prolonged
period of time. Furthermore, resveratrol did not affect
the levels of SIRT1, PGC-1a, or cytochrome C in aged
skeletal muscle [109].

Rapamycin, an immunosuppressant that may have
adverse effects in healthy individuals [110], inhibits
TOR signaling [88]. Increased mammalian TOR
(mTOR) signaling is a hallmark of the aging phenotype
and mTOR-centric views of aging have recently
emerged [111]. Studies have shown that inhibition of
mTOR signaling is associated with ameliorating several
age-related phenotypes including decelerating cellular
senescence, altered translational control, increased
mitochondria number and cellular respiration [112-114].
Moreover, researchers have shown that mTOR may
actually promote autophagy in a TORC Autophagy
Secretory Colocalization Compartment (TASCC) in
senescence cells as opposed to inhibiting autophagy
outside out of the TASCC [115]. This has lead to the
hypothesis that TOR signaling is alternatively regulated
during aging. Indeed, it is known that TOR signaling
has tissue-specific functions in mammals (71). Perhaps
systemically inhibiting TOR may prove problematic to
cellular functions including secretory protein autophagy

and to organs including skeletal muscle [110]. With age
in humans, there is a decrease in TOR signaling in
muscle [52] that may be linked to the progression of
sarcopenia because TOR signaling is important in
skeletal muscle homeostasis, all the stages of
regeneration [49-51] and muscle hypertrophy [52-54].
Therefore, systemically treating organisms with
rapamycin may impair the muscles’ ability to regenerate
upon injury and hypertrophy following exercise.
Furthermore, rapamycin was shown to cause a loss of
EC coupling [116] and a reduction in voltage-gated
Ca2+ release [117] contributing to functional decline.
Detailed pre-clinical studies in rodents are necessary to
evaluate any potential negative side effects of TOR
inhibition on skeletal muscle mass and function.

Therapeutic Interventions: Skeletal muscle-focused

The multiple benefits of CR, not only on sarcopenia but
also on other age-related diseases, has supported the
search for and use of CRMs to combat aging and extend
longevity. However the current CRMs do not elicit
such a widespread effect as CR itself and there is
insufficient evidence that they are able to combat
sarcopenia. It is therefore important to entertain the
hypothesis that management of sarcopenia may consist
of muscle-specific regimens that may be used in
conjunction with systemic anti-aging treatments.

Nutrition and Exercise

Studies have shown that supplementing nutritional
intake with amino acids spares skeletal muscle from
sarcopenia. It causes an increase in mTOR signaling
believed to result in increased cross-sectional area of
myofibers and protein synthesis [54, 67]. Furthermore,
it restored the ratio of type I and 2A fibers and
increased sarcomere volume [67]. Another contributing
factor to sarcopenia is a decline in physical activity and
increased susceptibility to disuse atrophy. For decades,
exercise has been recommended to slow down
sarcopenia. In humans, high-intensity resistance training
increased muscle strength and cross-sectional area [11,
12]. Furthermore, it is proposed that the combination
of increased amino acid intake and daily physical
activity can additively combat sarcopenia [54].
Although exercise and nutritional intake are the current
strategy for managing sarcopenia [118],
pharmacological approaches may be necessary given
that dietary and exercise regimens are challenging for
the elderly.

Pharmacological-based

Other strategies aimed at ameliorating sarcopenia
directly exploit hormonal imbalances and alterations of
signaling pathways critical for skeletal muscle tissue
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homeostasis. A number of hormones, cardiovascular
drugs, anti-inflammatory drugs, and metabolic agents
are currently being investigated in regard to a positive
effect on skeletal muscle mass and function and
potential use to prevent and/or attenuate sarcopenia.
We will highlight only a few selected molecules; for an
extensive review please see [119].

Testosterone supplementation caused an increase in body
and muscle weight attenuating the muscle loss associated
with sarcopenia. It increased the CSA of both fiber types
and prevented the age-related fiber-type shift [120].
Furthermore, it reduced oxidative stress and apoptosis
[120] while increasing the rate of protein synthesis [121]
and number of satellite cells [122]. The molecular
mechanisms underlying the protection mediated by
testosterone included suppression of myostatin and the
non-canonical TGF-f pathway via JNK signaling. In
addition, testosterone activated Notchl, Akt and G6PDH
[120]. The effects of testosterone on aged muscle
function are conflicting. While most investigators have
reported an increase in muscle strength [121, 123, 124],
there is also evidence of no changes [125]. Testosterone
treatment is controversial due to its side effects including
increased risk of cardiovascular problems and pedal
edema. Furthermore, it is not recommended for patients
at risk for some medical conditions including sleep
apnea, urinary tract symptoms and erythrocytosis [119].
An alternative treatment strategy is the use of synthetic
androgen modulators that elicit similar results without the
additional health concerns [126-128].

The renin-angiotensin pathway has recently been
implicated in the progression of sarcopenia [129, 130].
It increases the production of pro-inflammatory
molecules and promotes degradation of muscle proteins.
Angiotensin converting enzyme (ACE) inhibitors and
angiotensin II receptor blockers (ARBs) are two classes
of drugs used to mediate this pathway and both classes
have been studied in sarcopenia. Many clinical trials
have investigated the use of ACE inhibitors as treatment
against sarcopenia with non-uniform functional results;
some reports show improvement while others show no
change [131-133]. Losartan, an ARB, has shown
promising pre-clinical results in the treatment of disuse
atrophy and impaired regeneration in the context of
sarcopenia through the modulation of the TGF- and
Akt/mTOR pathways [60]. However, its effects on the
progression of sarcopenia in humans remain to be
elucidated. One pre-clinical study in rats showed an
attenuation of muscle strength but did not investigate
the muscle morphology [134].

IGF-1 has been linked to different aspects of skeletal
muscle homeostasis including growth, differentiation,

survival, regeneration and functional profile [47, 135].
It is documented that systemic levels of IGF-1 decrease
with age, however, the expression levels of muscle
intrinsic IGF-1 are not known. Several investigators
have shown that skeletal muscle specific over-
expression of IGF-1 is beneficial for sarcopenia. The
over-expression of IGF-1 prevents the decline in the
number of DHPR and RyR1 and restores the functional
capacity of aged mice [136]. Moreover, localized
expression of IGF-1 prevented sarcopenia and restored
the regenerative capacity of aged skeletal muscle [48].
IGF-1 is beneficial to skeletal muscle; however, its
sustained expression in cardiac muscle can lead to
pathological hypertrophy [137, 138]. Therefore, it is
important to identify molecular targets that increase this
growth factor specifically in skeletal muscle.

DISCUSSION

Sarcopenia is a devastating condition that can lead to
disability, increased morbidity and mortality. The age-
related modulation of a variety of signaling pathways
together with environmental constraints imposed on
elderly patients accelerate its progression. The etiology
of sarcopenia is linked to a wvariety of pathogenic
mechanisms and it is therefore challenging to identify
targeted therapies. The only currently existing
management for sarcopenia consists of nutritional
supplementation and an exercise regimen, albeit with
only mild beneficial effects. However, all geriatric
patients cannot benefit from this treatment. Because
normal muscle mass and strength are required to
perform daily activities, it is imperative to identify
pharmacological compounds that can prevent or slow
the progression of sarcopenia.

CR has been shown to attenuate various aspects of
sarcopenia; however, its primary mechanism of action is
unknown. The beneficial results have lead to the search
of CRMs but none of these compounds have been
demonstrated to combat sarcopenia. Furthermore, it is
important to emphasize that some of the pathways
modulated by CRMs are critical for skeletal muscle
homeostasis casting some doubts as to their potential
benefit in sarcopenia. For these reasons, it is imperative
to identify tissue-specific alterations and responses to
therapies in aging.

The aging of skeletal muscle is unique from other

tissues.  Skeletal muscle is a post-mitotic, multi-
nucleated tissue. Therefore, it is not subjected to
cellular senescence with age and can undergo

myonuclear apoptosis. Furthermore, skeletal muscle
atrophies with age whereas some tissues hypertrophy.
Differences also exist in the signaling pathways
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involved in aging. For example, mTOR signaling is
increased in other tissues but decreased in muscle
contributing to various age-related pathological
phenotypes. These intrinsic differences make finding a
“one size fits all” therapy for aging nearly impossible.
Thus far, the only treatment that has shown some
benefits for various aspects of aging is CR, although
detailed molecular knowledge about these benefits are
still lacking. Once the molecular mechanisms leading
to beneficial results of CR have been further
characterized, it will be possible to identify a more
specific CRM that emulates the effects of CR. It is
therefore necessary to combine multiple therapies with
organ-specific benefits while considering potential
detrimental effects to other organs.
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