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Hypothesis

Hormesis does not make sense except in the light of TOR-driven aging
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Abstract: Weak stresses (including weak oxidative stress, cytostatic agents, heat shock, hypoxia, calorie restriction) may
extend lifespan. Known as hormesis, this is the most controversial notion in gerontology. For one, it is believed that aging is
caused by accumulation of molecular damage. If so, hormetic stresses (by causing damage) must shorten lifespan. To solve
the paradox, it was suggested that, by activating repair, hormetic stresses eventually decrease damage. Similarly, Baron
Munchausen escaped from a swamp by pulling himself up by his own hair. Instead, | discuss that aging is not caused by
accumulation of molecular damage. Although molecular damage accumulates, organisms do not live long enough to age
from this accumulation. Instead, aging is driven by overactivated signal-transduction pathways including the TOR (Target of
Rapamycin) pathway. A diverse group of hormetic conditions can be divided into two groups. “Hormesis A” inhibits the
TOR pathway. “Hormesis B” increases aging-tolerance, defined as the ability to survive catastrophic complications of aging.
Hormesis A includes calorie restriction, resveratrol, rapamycin, p53-inducing agents and, in part, physical exercise, heat
shock and hypoxia. Hormesis B includes ischemic preconditioning and, in part, physical exercise, heat shock, hypoxia and
medical interventions.

Paraphrasing the famous quote “Nothing in Biology First, hormesis is an artefact. Certainly there are many
Makes Sense Except in the Light of Evolution”, one can artefacts in this field. Yet, there are also solid data
say that nothing in aging makes sense except in the light especially on the life-extension by calorie restriction,
of TOR-driven quasi-programmed aging, a continuation ROS, heat shock and phytochemicals.
of developmental growth driven by growth-promoting
pathways. And life span extension by mild damage Second, the phenomenon of hormesis rules out the
makes no sense, if aging is a decline caused by conventional theory of aging. Furthermore, as it was
accumulation of damage. already reviewed, “damage-induced aging” theory was
ruled out by other evidence too [31-38]. It was
Conventional view on aging discussed that aging is not the life-long accumulation of
It is believed that aging is a decline, deterioration due to molecular damage, is not decline and is not caused by
accumulation of random molecular and cellular damage reactive oxygen species (ROS) [35].
caused by free radicals, radiation, stresses, pathogens,
toxins, carcinogens, mistakes in replication/translation, Third, instead of rejecting the damage-induced theory,
protein misfolding and even mechanical forces. If aging paradoxical assumptions were suggested to reconcile it
is caused by damage, then damaging stresses would with hormesis (Figure 1B). To explain extension of
accelerate aging (Figure 1A). However, mild stresses lifespan by mild and repeated stresses, it was suggested
(including oxidative stress) can extend life span in that (a) mild stresses stimulate maintenance and repair
different species [1-30]. pathways and (b) cause adaptation of cells and the
ability to tolerate stronger stresses. Let us briefly review
How this can be reconciled with the conventional theory the attempt to reconcile hormesis and molecular
of aging. There are 3 options: damage-driven aging.
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Figure 1. Paradoxical links between damage and aging. (A) If agings is caused by damage,
then hormetic damage should accelerate aging. Also food by providing resources should
becelerate aging. Both prediction contradict observations, making the model incorrect. (B)
Paradoxical model assumes that (a) damage decrease damage and (b) the less resources (food),
the more resources can be used for anti-aging repair. These assumptions are paradoxical but
nevertheless are needed to fit predictions and observations. Paradoxical links are shown in red.

Conventional explanations of hormesis

Heat shock

Repeated exposure to mild heat shock increases life
span in Drosophila [11]. It was suggested that mild heat
shock reduces damage and protein aggregation by
activating internal antioxidant, repair and degradation
processes [2, 3]. In other words, chronic cellular stress
may prolong life span by either activating repair
mechanisms or by causing cell adaptation or both [1-3].

Calorie restriction

It was suggested that calorie restriction (CR) is a low-
intensity stressor, which enhances the ability of animals
to cope with intense stressors [4]. For example, in
young rodents, CR causes an increase in the afternoon
peak concentration of plasma corticosterone, a stress
hormone [5, 39]. Another explanation is completely
paradoxical. If damage is not completely repaired
because resources for repair are limited by food supply,
as suggested by Kirkwood [40], this predicts that CR
(less resources) must accelerate aging (Figure 1A). It
was also suggested by Kirkwood that, although the
repair is limited by insufficient resources, the more
resources (food), the less repair (Figure 1B). The reason
of self-contradiction is that aging, according to the same
theory, is purposefully regulated and the organism may
choose to age slower [40]. The paradoxes of this point
of view were recently discussed [34, 38, 41] and will
not be discussed here further.

ROS

In some studies, an increased production of reactive
oxygen species (ROS) correlated with extended life
span in different species. To explain such paradoxical
results it was suggested that an increased ROS in turn
increases resistance to ROS, thus extending life span [
1, 12, 14]. It was suggested that ROS leads to a
condition of mild stress, which in turn enhances vitality
[12]. In C. elegans reduced glucose availability
promoted formation of ROS, induces catalase activity,
and increased oxidative stress resistance, cumulating in
extension of life span [15].

Two noticeable problems

First, it is paradoxical to decrease damage by causing
damage (Figure 1B). There is no similar example in
medicine. If one wishes to prevent stroke due to high
blood pressure, one needs to decrease blood pressure
not to increase it. Examples are endless including
weight control to prevent diabetes and quitting smoking
to prevent lung cancer. No one will advocate “mild and
repeated” smoking to prevent lung cancer even though
it might activate the defenses. The simple reason is that
DNA damage is actually involved in cancer initiation.
But even cancer-promoting damage is not random:
mutations  activate  growth-promoting  pathways
including PI3K/mTOR, the most universal alteration in
cancer [42-45]. And cancer-initiating damage does not
cause cellular decline (in contrast, cancer cells are very
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robust and hyper-functional), is not sufficient to cause
cancer, requiring rounds of cell replication, selection
[46, 47] and organismal aging [48]. By slowing down
aging, CR and rapamycin delay cancer (without
affecting mutations). The notion that aging promotes
cancer is beyond the topic of this article and cannot be
discussed here. The point here is that since DNA damage
contributes to cancer, no one will suggest hormetic
smoking or radioactivity (at any doses) to delay cancer.
In analogy, if damaging hormesis may delay aging, aging
cannot be possibly be caused by damage.

Second problem is the suggestion that mild hormetic
stresses protect against severe stresses. What are these
severe stresses? Even according to the conventional
view, aging is not caused by accidental injures that are
stronger than hormetic damage. It is caused by
‘everyday’ ROS and other background stresses. Let’s
ask a straightforward question. Are hormetic stresses
stronger or weaker than those that cause aging? And
there is no answer. If damage that drives aging does not
sufficiently induce protective response, then hormesis is
stronger than aging-causing stresses. Then why is the
purpose of hormesis to protect from stronger stresses?
This question will be easily answered in the light of
TOR-driven aging.

Solution: a new view on aging

If aging is driven by damage, then damage must
accelerate aging. If hormesis induces damage and slows
down aging, then aging is not driven by damage. So a
straightforward explanation is that aging is not caused
by accumulation of molecular damage [36]. It was
predicted “that five years from now, current opponents
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Hormones -L i Catastrophes
Insulin Growth Aging Diseases Organ damage

Hormones /

Cytokines
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will take the TOR-centric model for granted, which then
will become new dogma (ironically)” [35].

It is becoming evident that ROS do not cause aging and
furthermore often is associated with longevity [26, 27,
30, 49, 50-66].

While rejecting ROS-driven aging, scientists still do not
dare to reject the view that aging is a decline due to
accumulation of random damage. Yet data exclude not
only ROS but also damage as a cause of aging. For
example, in C elegans, CR did not decrease the
accumulation of spontaneous mutations with age but
nevertheless extended life span [54].

Yes, perhaps, molecular damage accumulates but
organisms do not live long enough to age from this
accumulation. Even humans, long-living organisms, do
not die from a decline due to such an accumulation.
(And of course worm that lives just 5 days [67] cannot
possibly accumulate deadly levels of molecular
damage). Instead any human being has died from age-
related diseases, which are caused by active cellular
processes initiated by hyper-activation of signaling
pathways including mTOR [36, 68]. The pathogenesis
of diseases is well known. In contrast, a mysterious
cellular decline due to accumulation of molecular
damage is the fiction of gerontology, unknown in
medical science.

Instead of trying to adopt the phenomenon of hormesis
to the view on aging as accumulation of random
molecular damage, we will reconsider the view on

aging.

Hormesis B
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Figure 2. TOR-centric model of aging. Nutrients (food), growth factors, cytokines, insulin and
hormones activate the nutrient-sensing TOR (Target of Rapamycin) pathway, which promotes
growth and then aging, causing age-related diseases. In turn, diseases cause non-random organ
damage and death. Hormesis type A inhibits TOR thus slowing down aging. Hormesis type B
increases aging-tolerance and tolerance to complications of age-related diseases.
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Aging: TOR-driven process

The nutrient-sensing TOR pathway is activated by
insulin, growth factors and nutrients (Figure 2). In turn,
it increases protein synthesis, stimulates ribosomal
biogenesis and cell mass growth (causing cell
hypertrophy), inhibits autophagy, induces accumulation
of aggregation-prone proteins, increases growth factors
(GF) secretion and causes resistance to GF and insulin

[69-79].

The TOR pathway drives cellular mass growth. In
proliferating cells, cellular growth is balanced by cell
division [80]. In quiescent (resting) cells, growth-
promoting pathways drive senescence [80, 81]. When
the cell cycle is blocked but mTOR is still active, it
causes hypertrophic, hyperactive, hyper-functional (for
example, hyper-secretory) phenotype, with
compensatory resistance to signals such as insulin and
growth factors [82, 83] and compensatory lysosomal
activation. In other words, mTOR converted quiescence
into senescence, the process that was named gerogenic
conversion or geroconversion or gerogenesis [83].

In brief, TOR causes cellular hyper-functions, specific
to each tissue such as bone resorption by osteoclasts and
arterial wall tonus by smooth muscle cells, manifested
as osteoporosis and hypertension, for instance. This
eventually damages organs (aging-induced
catastrophes). As discussed, secretory phenotype [84] or
(more generally) hyper-functional phenotype [31] links
cell senescence to organismal aging and specifically to
age-related diseases. The TOR pathway is involved in
diseases such as cancers, type II diabetes and its
complications (retinopathy and renal hypertrophy), age-
related macular degeneration, obesity, atherosclerosis,
cardiac hypertrophy, organ fibrosis (liver, renal and
cardiac  fibrosis), osteoporosis, Alzheimer's and
Parkinson’s diseases and arthritis [31, 32, 38, 68, 74,
85-89]. Organisms die from age-related diseases. TOR
is involved in all of them [31, 68]. In other words, TOR
limits life span by accelerating age-related diseases. In
humans (and other mammals), age-related diseases are
manifestations of aging that actually limit life span.

Age-related diseases culminate in sudden catastrophes
(Figure 2). For example, death of cardiocytes, during
myocardial infarction, is often caused ischemia due to
the arterial occlusion. Such occlusions result from
increased coagulation and platelet hyper-function,
atherosclerosis, inflammatory state and high blood
pressure. Age-related osteoporosis culminates in the
broken hip, diabetes - in renal failure, hypertension - in
stroke, just to name a few. Inhibition of the TOR
pathway prolongs life span in yeast, worm, flies and
mice [77, 90-107]. Genes for aging (named gerogenes
[37]) constitute the TOR pathway [37]. Genes for

longevity (named gerosuppressors) antagonize the TOR
pathway [37]. Furthermore, some “anti-aging” hormetic
agents antagonize this pathway too.

Longevity: (a) slow aging and (b) aging-tolerance
Life span can be extended by either (a) slowing down
aging and (b) by increasing aging tolerance, defined as
the ability to survive complications (catastrophes) of
aging [36].

a. Obviously, inhibition of aging should extend life span
and delay age-related diseases. For example, calorie
restriction (CR) slows aging. CR delays age-related
diseases such as cancer and atherosclerosis, thus
extending life span. In other words, inhibition of
mTOR-driven aging delays catastrophic complications
of aging: namely, complications of age-related diseases
such as stroke, myocardial infarction (Figure 2). These
non-random catastrophes actually cause death.

b. But inhibition of aging (and delaying diseases) is not
the only way to extend life span. The second way is to
increase aging tolerance, which allows an organism to
survive catastrophes caused by age-related diseases.

Why organisms age

The existence of aging is well understood from the
evolutionary perspective and was discussed in detail.
Roughly speaking, in the wild, organisms do not live
long enough to experience aging. Therefore forces of
natural selection against aging are weak. Only in
protected environment (humans, domestic and
laboratory animals) die from aging.

Why organisms have low aging-tolerance

From the evolutionary perspective, organisms do not
tolerate aging for the same reason why they age in the
first place. In the wild, organisms do not live long
enough to experience aging and therefore organisms are
not naturally shaped to experience complications of
aging. Organisms are not selected by nature for aging-
tolerance. For example, parts of myocardium depend on
a single coronary artery. The occlusion of a coronary
artery causes life-threatening ischemia. Collateral
arteries would prevent ischemia. Natural selection
would favor such anatomical re-design, if it will extend
reproductive life span. If humans were routinely
reproducing after the age of 70, then variations with
additional branches of coronary arteries would be
selected.

Thus myocardial ischemia, due to artery occlusion is
one of the most common causes of death. The occlusion
may result from thrombosis of atherosclerotic coronary
arteries. But if the ischemic zone would receive blood
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supply from a collaterally artery, the organism would
survive the catastrophe. Thus, anatomical modifications
of a myocardial blood supply would increase aging-
tolerance without affecting aging itself. Noteworthy,
this is how coronary stents extend lifespan without
affecting aging. Most medical treatments increase aging
tolerance, thus extending an average life span despite
chronic age-related diseases. In contrast, pharma-
cological suppression of aging would increase healthy
lifespan by postponing diseases [108].

Two types of hormesis: (a) slowing down aging and
(b) increasing aging-tolerance

Hormetic stresses include two groups of agents that (a)
slow down aging by inhibiting the TOR pathway and
(b) increase aging tolerance, without affecting the aging
process (Figure 2). We will call them hormesis A and
hormesis B. Examples of hormesis A are calorie restrict-
tion, rapamycin, resveratrol and p53-inducing agents.
Examples of hormesis B are adaptive preconditioning to
ischemia and coronary bypass. Heat shock, hypoxia and
physical exercise belong to both groups.

Hormesis A

Calorie restriction

Caloric restriction (CR) markedly extends life span in
diverse species from yeast to mammals and delays the
occurrence and/or slows progression of age-associated
diseases [109-118]. It was suggested that CR slows
down aging via the TOR pathway in yeast, C. elegans
and Drosophila and mammals [34, 93, 94, 119-[122]. In
humans, it has been shown that nutrients activate TOR
in the muscle tissue, causing insulin-resistance,
preventable by rapamycin [123]. Starvation or CR de-
activates the TOR pathway [71, 96, 97, 124]. Thus, by
inhibiting TOR, CR may slow down aging and extend
lifespan.

Chemical hormesis

Plants, microorganisms and sea animals produce toxic
agents that inhibit or damage microtubules, DNA and
many other vital targets. Due to their toxicity, some of
them are used as anti-cancer drugs, although nature did
not created them for that purpose. Nature of course
created these poisons to hurt predators and competitors
[125, 126]. Similarly, rapamycin is an antifungal
antibiotic produced by bacteria. TOR stimulates growth
in response to nutrients. Therefore, soil bacteria produce
rapamycin to inhibit yeast growth. While inhibiting
TOR-dependent growth, rapamycin slows down TOR-
dependent aging in older yeast [93, 94]. Given that
cancer (like aging) is “a form of growth”, the mTOR
pathway is activated in cancer. And, although not
created for that purpose by nature, inhibitors of mTOR
are used as anticancer agents [42, 43, 127, 128]. I wish

to emphasize again that bacteria produce rapamycin
neither as a medicine for longevity nor as an anticancer
drug, but as an antifungal antibiotic. Simply the same
signaling pathways that are involved in growth also are
involved in cancer and aging [88]. Growth suppressants
may suppress aging because aging is a continuation of
growth, driven by the same TOR/S6K pathway [129].
To extend lifespan, they either should inhibit the TOR
pathway or increase aging tolerance (Figure 2).

Rapamycin

Rapamycin extends life span in yeast, drosophila and
mice [94, 98, 99, 130, 101, 103, 130]. It is indicated for
almost all age-related diseases [31, 48, 68, 131].
Rapamycin is not toxic for normal cells at
concentrations that exceed therapeutic levels 1000 fold
[132], [133]. There are no side effects of high dose
rapamycin in healthy volunteers [123, 134]. Rapamycin
has been used in children [135] and in pregnant women
[136]. Despite common misconception that rapamycin
is an immunosuppressant, rapamycin improves
immunity in mice when used appropriately [137-139].
As an anti-aging modality, rapamycin could be used in
doses and schedules that do not cause side effects [132].

Resveratrol

Resveratrol, a natural agent found in grape skins,
prevents age-related diseases and extends lifespan in
several species [10, 140-145], including mice on high-
fat diet [144]. Resveratrol activates sirtuins [10, 146-
147], which inhibit the TOR pathway (see for
references [148]). Resveratrol indirectly antagonizes
the mTOR/S6K pathway upstream and downstream
[129, 149-153], in part via activation of AMPK and
sirtuins [154-160]. Plants produce resveratrol to
protect grapes from parasites. But, coincidentally,
inhibition of the TOR pathway slows down aging.
Thus, the anti-aging effect of resveratrol may be just a
side effect of targeting mTOR. Yet, at concentrations
that inhibit mTOR the gerosuppressive effect of
resveratrol is limited by its toxicity [149]. This is not
surprising, given that resveratrol inhibits mTOR at
micro-molar concentrations at which it also inhibits
multiple unrelated targets. This may explain why anti-
aging effects in mice may be limited by resveratrol
toxicity [161]. As a potential solution, resveratrol at
sub-therapeutic doses could be combined with
rapamycin.

Metformin

The anti-diabetic drug metformin activates AMPK,
which in turn antagonizes the mTOR pathway [24, 162-
165]. Metformin decreases insulin resistance, prevents
diabetes and its complications, decrease incidence of
heart diseases and cancer [166-168]. In rodents,
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metformin prolongs life span or prevents cancer or both
[169-174].

Physical exercise

As an example of hormesis A, chronic increase in
physical activity inhibits mTOR/S6K1 in rat skeletal
muscle [175]. Physical activity can also increase aging-
tolerance, acting as hormesis B.

Heat shock

The TOR pathway stimulates Cap-dependent protein
synthesis. Elevated temperature inhibits cap-dependent
protein synthesis. Thus, heat shock blocks TOR-
stimulated protein synthesis. For example, heat shock
protein Hsp27 inhibits translation during heat shock by
binding elF4G [176]. Therefore, heat shock acts as
“hormesis A” by imitating TOR inhibition. The small
heat-shock proteins also delay the onset of polygluta-
mine-expansion protein aggregation, suggesting that
these proteins couple the normal aging process to this
type of age-related disease [177]. Also, HSPs and
chaperones can increase resistance or tolerance to
catastrophic complications of aging, defining them also
as hormesis B.

Hypoxia

Depending on conditions, HIF-1 and hypoxia have
different effects on longevity [30, 65, 178]. mTOR via
phosphorylation of S6K/S6 and 4EBPI1 induce cap-
dependent translation. In contrast, hypoxia decreases
cap-dependent translation. Hypoxia inhibits protein
synthesis by deactivation of the mTOR pathway as well
as by inactivation of eIF2a and eEF2 factors [179-186].

p53-inducing stresses

DNA damage induces p53, which is known to inhibit
mTOR pathway both upstream and downstream of
mTOR [187-197]. Induction of p53 by nutlin-3a can
suppress senescent phenotype or suppress conversion of
quiescence into senescence [197-200]. The gero-
suppressive effect is evident only when p53 is capable
to inhibit mTOR [198, 201]. In certain conditions, p53
may act as an anti-aging agent [202-207].

Hormesis B
Hormesis B extends life span by increasing aging
tolerance. Mild stresses prepare organism to

catastrophes caused by diseases of aging. Examples of
catastrophes include stroke and myocardial ischemia.
The occlusion of a cerebral artery for 60 min (injurious
ischemia) damages the brain. The occlusion of the same
cerebral artery for 15 min (preconditioning) protects
from the damage caused by injurious ischemia [208].
Similarly, severe myocardial ischemia causes
irreversible injury. Mild ischemia protects the heart

from severe ischemia. Similarly, by inducing HSPs,
heat shock may protect the myocardium from severe
ischemia. Repeated, transient ischemic episodes or heat
shock augment the ischemic tolerance of affected
myocardium. Upregulation of immediate early genes
and heat shock genes plays an important role in
myocardial adaptation to acute ischemic stress [209].
Also, hormetic stresses can cause growth of collateral
arteries. This coronary collateral function can preserve
ischemic myocardium [210].

The cardioprotection against myocardial injury by
regular exercise may include the development of
collateral coronary arteries and induction of myocardial
heat shock proteins [211].

Similarly, coronary bypass protected heart from
ischemia. Although we do not call such medical
procedures hormesis, there is no strict borderline
between them and hormesis B. For example,
reconditioning, hypoxia, and stresses may “train”
cardiomyocutes to survive acute episode of coronary
thrombosis. Also, it develops small blood vessels that
could compensate for the occlusion of main artery.

Now we can solve the second problem of hormesis (see
“two noticeable problems”). The answer is: hormetic
stresses protect from stronger stresses. But these
stronger stresses are not those that cause aging (aging is
not caused by any stresses). These are complications of

aging or age-related diseases. We call them
catastrophes. Hormesis B protects from lethal
catastrophes.
Conclusion

The hypothesis that aging is NOT driven by
accumulation of random damage allows us to explain
hormesis. Type A hormesis antagonizes the TOR
pathway (Figure 2). Hormesis B causes stresses
including damaging stresses. Since aging is not caused
by damage, this does not contribute to aging but instead
may cause aging-tolerance, thus protecting organisms
from  lethal consequences of  aging-induced
catastrophes.
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