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The yeast chronological life span (CLS) model has led
to the identification of the pro-aging effects of the TOR-
Sch9 /S6K and Ras-Adenylate cyclase-PKA pathways,
components of which play conserved role in nutrient
sensing and aging in mammals [1-4]. One of the early
changes that occurs in yeast cells grown in media
containing 2% glucose and excess amino acids is the
production of acetic acid and acidification of the
medium to below pH 4. This acidification has been
shown to accelerate yeast aging [5-9]. However, it is
clear that it does not explain the effect of the TOR-
Sch9/S6K and Ras-AC-PKA pathways on aging since
their inhibition extends chronological life span in media
that is not acidified and that does not contain acetic acid
[10]. The assumption that acetic acid is an organic
toxin, which is the key mediator of chronological aging
under standard conditions, is probably not true for most
genetic  backgrounds, since under physiological
conditions acetic acid is generated at low levels
compared to another metabolite, ethanol [6-7, 11].
Additionally, acetic acid, in spite of its potential
toxicity, represents one among several carbon sources
that can be utilized by Saccharomyces cerevisiae for
growth and metabolism [12-15].

In previous issue of Aging, Leontieva and Blagosklonny
describe a yeast-like chronological senescence (CS)
model in mammalian cells (Leontieva and
Blagosklonny). They show that human tumor cells
maintained in stationary culture lose their viability
(colony forming units) and that this process is
accelerated by medium acidification caused in part by
lactate accumulation, which mirrors the accumulation of
ethanol and some acetic acid, and the acidification of the

medium in S. cerevisiae [5-7, 9]. In yeast, the ethanol
accumulated during the growth phase can be used as
carbon source during the diauxic shift and the post-
diauxic phase, when cells stop dividing and switch from
a fermentation- to a respiration-based metabolism [5,
16-17]. Long-lived mutants with deficiencies in the
TOR- Sch9/S6K and Ras-AC-PKA pathways deplete
ethanol, show a reduced accumulation of extracellular
acetic acid [6, 11](M. Wei unpublished results) as well
as activate glycerol biosynthesis [11]. As opposed to
glucose and ethanol and, possibly, acetic acid, glycerol
does not elicit adverse effects on cellular protection and
life span suggesting that the Torl/Sch9-regulated
glycerol biosynthesis results in the removal of pro-aging
carbon sources [11].

Leontieva and Blagosklonny show that the “yeast-like”
chronological senescence in mammalian cells is delayed
and attenuated by the inhibition of the mTOR and PI3K
signaling pathways, both of which have been implicated
in longevity regulation in organisms ranging from yeast
to mice. Conditioned medium produced by rapamycin-
treated cells was less toxic in inducing CS. However,
the addition of rapamycin did not protect fibrosarcoma
cells from high concentration of lactate suggesting that
rapamycin did not protect cells from CS per se. Rather,
inhibition of mTOR affected cellular metabolism and
inhibited lactate production during the early phase of
stationary survival, which led to a reduced initial lactate
accumulation and delayed CS (Leontieva and
Blagosklonny). Interestingly, mTOR was spontaneously
inactivated after one day in culture, possibly a
protective response to lactate accumulation and medium
acidification. These results suggest that mTOR
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promotes CS by favoring lactate production and
medium acidification in agreement with the role for
TOR-Sch9/S6K in promoting ethanol and acetic acid
accumulation in yeast [5, 11, 18]. By contrast, the
deletion of either TOR1 or SCH9/S6K are known to
extend yeast chronological life span in part by depleting
ethanol and acetic acid but largely by mechanisms that
are cell autonomous [10-11, 19-21].

It has been argued that acidification of the culture
medium and the accumulation of non-fermentable
carbon sources such as ethanol and acetic acid render
the CLS a paradigm for the identification of “private”
mechanisms specific for yeast chronological aging [7,
22-23]. However, not only the yeast CLS method has
been remarkably effective in discovering genes later
shown to promote aging in mammals [4], it has also
revealed the multi-factorial nature of yeast chrono-
logical senescence and points to the involvement of
diverse cellular processes, such as mitochondrial
respiration, reactive oxygen species signaling [1, 19, 24-
27], stress response[3, 10, 28], autophagy [29-30], and
genome maintenance, in the regulation of life span [31-
35]. Although, accumulation of toxic metabolic
byproducts may not represent a mechanism of aging in
yeast [5-8] or mammalian cells (Leontieva and
Blagosklonny [36]), chronological senescence provides
a simple model for probing the roles of genes and
signaling pathways that affect aging and a powerful
platform for high-throughput screening of agents that
modulate aging and age-related disease progression.
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