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Exceptional longevity is associated with decreased reproduction
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Abstract: A number of leading theories of aging, namely The Antagonistic Pleiotropy Theory (Williams, 1957), The
Disposable Soma Theory (Kirkwood, 1977) and most recently The Reproductive-Cell Cycle Theory (Bowen and Atwood,
2004, 2010) suggest a tradeoff between longevity and reproduction. While there has been an abundance of data linking
longevity with reduced fertility in lower life forms, human data have been conflicting. We assessed this tradeoff in a cohort
of genetically and socially homogenous Ashkenazi Jewish centenarians (average age ~100 years). As compared with an
Ashkenazi cohort without exceptional longevity, our centenarians had fewer children (2.01 vs 2.53, p<0.0001), were older
at first childbirth (28.0 vs 25.6, p<0.0001), and at last childbirth (32.4 vs 30.3, p<0.0001). The smaller number of children
was observed for male and female centenarians alike. The lower number of children in both genders together with the
pattern of delayed reproductive maturity is suggestive of constitutional factors that might enhance human life span at the
expense of reduced reproductive ability.

INTRODUCTION RESULTS
The relationship between longevity and fertility has
been extensively investigated, both in human and in
lower life forms, but has produced conflicting results. The study population consisted of People with
While most human studies have suggested a trade off Exceptional Longevity defined as those who have
between longevity and fertility [1-4], others have reached a minimum age of 95 (PEL; n=525; 75%
reported a positive correlation [5-7] or no consistent females). PEL were born around the turn of the century

Participants

association [8-11]. These conflicting results could be
partly attributed to unsuitable control groups, such as
comparing individuals from different birth cohorts or to
differences in socioeconomic status of study
populations, incomplete data collection in historic
cohorts and other methodological issues [12].

We sought to address this question in a case-control
study of a wunique community-based cohort of
Ashkenazi Jewish individuals with exceptional
longevity. Today, Ashkenazi Jews comprise about 80
percent of the Jews in the United States and are an
attractive target for genetic studies of aging and
mechanisms of disease due to their relative genetic
homogeneity and sizable numbers.

and reached reproductive age in the 1920’s. We
generated a control group, non-PEL, by collecting life
data from an unrelated group of elderly Ashkenazi
Jewish individuals (spouses or friends of PEL
offspring), determining their parents’ reproduction
history. Non-PEL were therefore contemporaneous with
PEL, but died before age 95 (non-PEL; n=193; mean
age at death for women 74.9 (SD 14.5); mean age at
death for men 72.4 (SD 13.4); range 26-94 years).

PEL have fewer children than non-PEL
In our cohort, PEL had significantly fewer children than

non-PEL (2.01 vs 2.53; p<0.0001) (Figure 1). This
lower parity among PEL was not related to gender,
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since both female and male PEL individuals had lower
number of children as compared to non-PEL (number of
children for female PEL=1.97 vs male PEL=2.16;
p=0.08). Similarly, among PEL, the number of children
did not differ by level of education (number of children
for PEL with high school diploma or below = 1.92 vs.
PEL with higher education = 1.82; p=0.4).
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Figure 1. The number of children born to people with
exceptional longevity (PEL) and a non-PEL control group.

PEL exhibit delayed fertility

We found additional support for the concept of delayed
reproductive maturity in our cohort. Since reliable data
about age at first and last pregnancy and menarche were
not available for non-PEL, we compared these values in
PEL and the offspring of the non-PEL control group.
PEL were significantly older at menarche (13.2 vs 12.3;
p<0.0001), at birth of their first child (28.0 vs. 25.6;
p<0.0001) as well as last child (32.4 vs. 30.3;
p<0.0001).

DISCUSSION

Our results support the notion of a tradeoff between
longevity and reproduction in humans. PEL and non-
PEL individuals in our cohort were all born around the
turn of the century and reached reproductive age in the
1920’s, long before reliable methods of birth control
were widely available. This reduces the influence of
contraception on family size, a potential caveat in
similar studies on more contemporary populations.

The disposable soma theory of aging argues that
investment in reproduction deprives organisms of
resources required for self-maintenance, thus reducing
longevity. This effect might be more easily explained in

females through direct physical burdens of pregnancy,
childbirth and breast-feeding. However, in our PEL
cohort we observed similar reduced fertility among
male and female participants, suggesting that factors
other than mere physical stressor of reproduction (e.g.
unrecognized genetic factors that affect males and
females equally) may also be responsible. Support for
this observation can be found in the Reproductive-Cell
Theory of Aging, which maintains that hormones that
promote growth and development early in life to
achieve reproductive maturity act in an antagonistic
pleitropic manner later, promoting senescence [13, 14].
A genetic predisposition to hinder and/or delay these
hormonal mechanism might reduce reproductive
success and at the same time delay aging and mortality
in women and men alike [2, 15]. A potential
physiologic mechanism may be related to genes
involved in cholesterol metabolism. Since we find a
favorable cholesterol phenotype and genotype in our
subjects (CETP, APOC3, ADIPOQ) [16, 17] it is
possible that such genes delay gonadal maturity in the
young while protecting them later in life from adverse
phenotypes commonly associated with aging, thus
extending life span.

In order to explain the trade-off between longevity and
reproductive ability, other investigators have focused on
the possible role of the mTOR signaling pathway [18,
19]. The mammalian target of rapamycine (mTOR) is
responsible for sensing cellular energy status and for
coupling it to cell growth and proliferation [20]; it is
also believed play a role in central regulation of
puberty. Acute activation of mTOR in pubertal female
rats stimulates LH secretion, whereas blockade of
central mTOR signaling by rapamycin inhibits
gonadotropic axis and delays puberty [21]. Others have
shown that inhibition of mTOR extends life span of
invertebrates [22] and mammals [23]. Therefore it
seems that a weak mTOR signaling pathway might lead
to longevity at the expense of delayed puberty or
limited fertility.

These results confirm the observation that women who
achieve exceptional longevity reproduce later in life, as
also reported by others [2, 3, 5-8, 15]. PEL were 2.5
years older than the offspring of non-PEL at their first
childbirth and 2.1 years older at last childbirth. We find
these results especially significant, since this
comparison was done between females of two
consecutive generations. Although various historic
variables like war and the Great Depression might have
contributed to delayed pregnancy in PEL, overall the
mean age at first childbirth has steadily increased in the
past 30 years, according to data from National Vital
Statistics Report, CDC. It has been suggested that the
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ability to have children in fifth decade of life may be a
marker for slow aging and subsequent longevity [7, 15].
Alternatively, it might be a marker of genetically
delayed or limited fertility in centenarians, also
suggested by others [2, 15]. On the other hand, earlier
menarche in non-PEL offspring can also be explained
by improved nutrition in later generations.

The strengths of our study include a well-characterized
and homogenous study population, comparison within
the same birth cohort and large sample size. In addition,
direct collection of information about family size from
PEL subjects and from children of non-PEL reduces the
likelihood of underreporting number of children, a
common critique of similar studies done on more
historic populations who might have underreported the
number of children who died young or the number of
female children [2, 7, 12]. However, certain limitations
of our study warrant consideration. It is unclear whether
these results can be generalized to other ethnicities,
although survival and cause of death in Ashkenazi Jews
are similar to those of the general white population in
the US [16]. Also, the observational nature of our study
precludes any causal inference.

In conclusion, our study shows that individuals who
achieve exceptional longevity have fewer children than
a contemporaneous population with usual survival, and
that they tend to reproduce later in life. Further studies
are needed to confirm this finding and to establish the
mechanisms responsible for this delayed and reduced
reproductive ability.

METHODS

Recruitment methods for the Searching for Longevity
Genes in the Historically Unique Ashkenazi Jewish
Population Study and characteristics of the cohort have
been described in detail elsewhere [16, 17, 24, 25].
Briefly, subjects were recruited by word of mouth,
through advertisements in Jewish aging centers and
homes, and through publicity in synagogues and Jewish
media, mostly in the New York area. A trained
interviewer collected data on socio-demographics and
family structure, number of children including those
who died from all consenting members of the families.
In case of PEL, stated ages were verified by checking
participants’ passports or birth certificates. In case of
non-PEL, age at time of death and number of children
were collected through interviewing their children. In
many instances, multiple members of the same family
took part in the study, providing additional validation of
parental life span, family size and other data.

We excluded PEL who married late in life or if the
duration of their marriage was too short for completing
their family, although only 2 individuals had to be
excluded due to these criteria. We used student’s t-test
to compare mean number of children and age at first
and last pregnancy. Statistical analysis was conducted
using SPSS (Chicago, IL) and p-values less than 0.05
were considered statistically significant.
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