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Abstract: In recent years, numerous new targets have been identified and new experimental therapeutics have been
developed. Importantly, existing non-cancer drugs found novel use in cancer therapy. And even more importantly, new
original therapeutic strategies to increase potency, selectivity and decrease detrimental side effects have been evaluated.
Here we review some recent advances in targeting cancer.

In 1977, Andrzej "Andrew" V. Schally won Nobel
Prize in medicine for his research into peptide
hormone production in the brain. He described the
neurohormone GnRH and other releasing hormones
(RH). As initially unexpected application, agonists and
antagonists of these hormones have become
investigational anti-cancer agents [1-3]. As further
developments, Schally and coworkers described
targeting gastrin releasing peptide receptors. Gastrin-
releasing peptide (GRP) is involved in cancer growth
and GRP receptors are expressed in a variety of cancer
cells and have limited distribution in normal human
tissue. Thus inhibition of GRP receptors represents an
attractive target for pharmacological treatment of
certain human malignancies [4]. Also, MZ-5-156, an
antagonist of growth hormone-releasing hormone
(GHRH), decreased cell proliferation and activated
AMPK and inhibited Akt, the mammalian target of
rapamycin (mTOR) and its downstream target elF4E
which controls protein synthesis and cell growth [5].
GHRH antagonists also caused cell cycle arrest and
apoptosis in human colon cancer cells [6, 7].

Yet, this is only one of hundreds examples for new
therapeutic targets and new types of drugs that have
been developed recently in cellular and animal models.
Searche for new targets has continued with many
promising lead compounds identified [8-38].

Among promising targets are cancer stem cells [39-42],
microRNAs [43-50], the MEK/ERK pathway [51-64]
and especially its upstream activator BRAF [61, 65-67]
and the NF-kB pathway [68], Myc and HIF-1 [69-72],
The CtBP transcriptional corepressors [73], Polycomb
group (PcG) proteins [74], autophagy [75-77],
translation [78], the proteasome [35], HSP70 [79, 80],
Hsp90 [81-84], the AMPK-FoxO3A axis [85], STAT3
and MEK/ERK/BCL-2 signaling [86], the Hh signal
transducer Smoothened [87], ErbBs receptor tyrosine
kinases [88], and anti-apoptotic members of the Bcl-2
family, Bcl-2, Bel-X(L) and Mcl-1 [89]. Stromal and
endothelial cells are also targets [90, 91]. There are also
new targets for anti-angiogenic therapy [71, 75, 78, 92-
94]. Also, epithelial mesenchymal transition (EMT) is a
critical mechanism for the acquisition of malignant
phenotypes by epithelial cells [95]. In colorectal cancer,
such cells are histologically represented by tumor buds
defined as single cells or small clusters of de-
differentiated tumor cells at the invasive front. These
buds are also considered as targets for novel cancer
therapy [96, 97]. Recently, leukocytes in the ovarian
cancer microenvironment such as regulatory T cells and
immature pro-angiogenic myeloid cells have been
demonstrated to play a fundamental role in tumor
progression and have been suggested as potential target
[98]. Cdk4/6 is an attractive target for cancer therapy.
Thus, a 2-aminothiazole-derived Cdk4/6 selective in-
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hibitor, named Compound A potently inhibits Cdk4 and
Cdk6 with high selectivity [99]. Among 82 human cell
line examined, leukemia and lymphoma cell lines
tended to be more sensitive to Compound A. In a nude
rat xenograft model, Compound A inhibited cell
proliferation in xenograft tumors at a plasma
concentration of 510 nM. Compound A only moderately
inhibited cell cycle progression of normal crypt cells in
small intestine even at 5 times higher plasma
concentration and did not cause immunosuppression
even at 17 times higher concentration [99].

Targeting the androgen receptor also has also shown
significant progress [100-103]. An interesting example
is targeting androgen receptor in estrogen receptor-
negative breast cancer [104]. Also, a small-molecule
inhibitor of the amino-terminus domain of the androgen
receptor causes regression of castrate-recurrent prostate
cancer [105, 106]. Recent discoveries revealed a
transcription-independent function of androgen receptor
that is essential for prostate cancer cell viability and,
therefore, is an ideal target for anticancer treatment.
Several of the identified AR inhibitors demonstrated in
vivo efficacy in mouse models of PCa and are
candidates for pharmacologic optimization [107].

Among numerous new experimental therapeutics, a
small-molecule inducer of polyploidy, R1530, interferes
with tubulin polymerization, leads to abortive mitosis,
endoreduplication and polyploidy. In the presence of
R1530, polyploid cancer cells underwent apoptosis or
became senescent which translated into potent in vitro
and in vivo efficacy. Normal proliferating cells were
resistant to R1530-induced polyploidy thus supporting
the rationale for cancer therapy by induced polyploidy.
BubR1 plays a key role in polyploidy induction by
R1530 and could be exploited as a target for designing
more specific polyploidy inducers [108]. Vosaroxin
(formerly voreloxin) is a first-in-class anticancer
quinolone derivative that intercalates DNA and inhibits
topoisomerase II, inducing site-selective double-strand
breaks (DSB), G2 arrest and apoptosis. Homologous
recombination repair (HRR) is critical for recovery
from DNA damage induced by both agents, identifying
the potential to clinically exploit synthetic lethality
[109]. Depletion of POLQ (DNA polymerase theta)
renders tumor cells more sensitive to radiotherapy
without effecting normal tissues, providing ways to
increase therapeutic window [110]. Mycoplasma is also
a target for cancer prevention [111] and therapy [112].
Among additional targets is activating transcription
factor 5 (ATFS), an anti-apoptotic protein that is highly
expressed in malignant glioma but not normal brain
tissues, and is essential for glioma cell survival [113].

There were several developments in targeting pS3 and
its cousins, p73 and p63 [114-121]. Nutlin-3a is a non-
genotoxic inducer of p53 and causes the transcription-
independent mitochondrial p53 program of nutlin-
induced apoptosis in tumor cells [122] p53-dependent
inhibition of TrxR1 contributes to the tumor-specific
induction of apoptosis by RITA [123]. A new
therapeutic basis for treating Li-Fraumeni syndrome
breast tumors expressing mutated p53 has been
suggested [124]. Importang breakthrough was the
development of curaxins: anticancer compounds that
simultaneously suppress NF-kB and activate p53 by
targeting FACT [30, 125, 126].

There was continued development of new ways of drug
delivery including liposomes and nanoparticles [91,
127-130]. There are several highly innovative strategies
such as targeting tumors with Salmonella Typhimurium
[131-133] and use of low-level doses of [(32)P]ATP to
inhibit tumor growth [134]. Several cancer treatment
approaches, such as proteasome inhibitor Bortezomib
and  hsp90  inhibitor = geldanamycin, involve
accumulation of misfolded proteins creating proteotoxic
stress. Low efficacy of these therapies is likely due to
the protective effects of heat shock response (HSR)
induced in treated cells, making this pathway an
attractive target for pharmacological suppression. It was
shown that the anti-malaria drugs quinacrine prevented
HSR in cancer cells. Quinacrine did not affect protein
synthesis, but rather suppressed inducible HSFI1-
dependent transcription of the /Asp70 gene. A
combination of non-toxic concentrations of quinacrine
and proteotoxic stress inducers resulted in rapid induction
of apoptosis in cancer cells. Therefore, quinacrine, a
non-toxic drug long used for treatment of malaria, has
significant clinical potential in cancer therapy [80, 135-
137]. Another example is proteotoxic stress targeted
therapy (PSTT), where the induction of protein
misfolding enhances the antitumor effect of the
proteasome inhibitor Bortezomib [138]. Also it was
shown that hypoxia enhances the replication of oncolytic
herpes simplex virus in p53- breast cancer cells [139].

Aerobic glycolysis, characterized by high glucose
uptake, low oxygen consumption and elevated
production of lactate, is associated with a survival
advantage and is a hallmark of cancer. Targeting key
metabolic enzymes involved in glycolysis may provide
a novel therapeutic approach [140-145].

There was also further development of the concept of
synthetic  lethality [146-149].  Synthetic lethal
interactions  between mutated oncogenes/tumor
suppressor genes and molecules involved in DNA
damage signaling and repair can be therapeutically
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exploited to preferentially kill tumor cells [150]. As
another example of synthetic lethality, activation of
mTOR by targeting TSC2 is toxic in cancer cells
lacking Rb [151, 152].

Intriguingly, activation of mTOR converts arrest caused
by p53 into senescence [153-156]. And vice versa,
inhibition of mTOR allows arrested cells to avoid
senescence, remaining merely quiescent. This is in
agreement with the notion that mTOR is involved in
aging and aging and age-related diseases [157, 158].

There was also further development of the concept of
protection of normal cells [159]. Pre-treatment with low
doses of actinomycin D, a clinically-approved drug and
potent p53 activator, before adding the aurora kinase
inhibitor VX-680 protected normal fibroblasts from
polyploidy and nuclear morphology abnormalities
induced by VX-680 [160]. Similarly, normal cells could
be protected from cytotoxic chemotherapy by nutlin-3a,
actinomycin, rapamycin and metformin alone or in
combinations [161-163]. Several other strategies to
protect normal cells are under development [164-166].

As a side effect, CPT-11 can cause severe diarrhea
caused by symbiotic bacterial beta-glucuronidases that
reactivate the drug in the gut. The strategy was
suggested to target these enzymes without killing the
bacteria essential for human health. Bacterial beta-
glucuronidase inhibitors were identified, which have no
effect on the orthologous mammalian enzyme.
Inhibitors were effective against the enzyme target in
living bacteria, but did not kill the bacteria or harm
mammalian cells. Oral administration of an inhibitor
protected mice from CPT-11-induced toxicity [167].In
another study, transgenic mice overexpressing p53 were
protected from the gastrointestinal syndrome after
irradiation. This suggests that the gastrointestinal
syndrome is caused by the death of gastrointestinal
epithelial cells and that these epithelial cells die by a
mechanism that is regulated by p53 but independent of
apoptosis  [168]. While inhibition of Notchl plus
Notch2 causes severe intestinal toxicity, therapeutic
antibody targeting of individual Notch receptors avoids
this effect, demonstrating a clear advantage over pan-
Notch inhibitors [169]. Interestingly, chromosomal
instability (CIN) is associated with intrinsic resistance
to taxanes, acquired multidrug resistance and poor
prognosis. In contrast, platinum agents may specifically
target CIN cancers [170].

In addition to quinacrine, other well known, non-toxic
drugs are under re-development for cancer therapy. One
of them is metformin, an anti-diabetic drug [171-186].
Several research groups observed that breast cancer

patients receiving beta-blockers for hypertension had
reduced metastasis and improved clinical outcome.
Medical records revealed that beta-blocker treated
patients showed a significant reduction in metastasis
development, tumor recurrence, and longer disease free
interval after surgery. In addition, there was a reduced
risk of metastasis and a reduction in breast cancer
mortality [187-189]. This finding was further confirmed
[190-192]. Another advance is to use of Angiotensin II
type 1 receptor blockers in ER-positive and ERBB2-
negative breast cancer cases [193].

Thus there have been significant advances to the
targeting of various cancers, both with selective
inhibitors and with drugs such as rapamycin and
metformin which have been used to treat organ
transplant patients and diabetics respectively. Further
studies will continue to evaluate the effectiveness of
targeting the various pathways mentioned in this review
with signal transduction inhibitors, natural products,
chemotherapeutic drugs and drugs used for different
medial purposes either by themselves or in various
intelligent combinations based on the knowledge of the
critical signal transduction pathways altered in the
particular cancer cell.
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