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Hypothesis

Molecular damage in cancer: an argument for mTOR-driven aging
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Abstract: Despite common belief, accumulation of molecular damage does not play a key role in aging. Still, cancer (an
age-related disease) is initiated by molecular damage. Cancer and aging share a lot in common including the activation of
the TOR pathway. But the role of molecular damage distinguishes cancer and aging. Furthermore, an analysis of the role of
both damage and aging in cancer argues against “a decline, caused by accumulation of molecular damage” as a cause of
aging. | also discuss how random molecular damage, via rounds of multiplication and selection, brings about non-random

hallmarks of cancer.

INTRODUCTION

Aging is defined as a decline caused by accumulation of
all sorts of damage, in particular, molecular damage.
This statement seemed so obvious that it was not
questioned. Yet several lines of evidence rule out
molecular damage as a cause of aging [1-15]. Yes, of
course, molecular damage accumulates over time. But
this accumulation is not sufficient to cause organismal
death. Eventually it would. But the organism does not
live long enough, because another cause terminates life
first [8]. This cause is aging, a continuation of
developmental growth.  Definitely, developmental
growth is not driven by accumulation of molecular
damage, although molecular damage accumulates.
Similarly, aging is not driven by damage.

Growth is stimulated in part by mitogen- and nutrient-
sensing (and other) signaling pathways such as mTOR
[16-35]. Aging, “an aimless continuation of develop-
mental program”, is driven by the same signaling
pathways including mTOR [8, 14, 24]. Aging in turn
causes damage: not molecular damage but non-random
organ damage (stroke, infarction, renal failure and so
on) and death [13]. Seemingly, one objection to this
concept is that cancer is caused by molecular damage.
And cancer is often a cause of death in mammals. So
how may one claim that damage does not drive aging, if
it is involved in cancer. Let us discuss this.

Damage in cancer

Damage causes activate oncogenes and de-activate
tumor suppressors due to genetic mutations, epigenetic
alterations and microRNAs dysregulation [36-57]. Even
according to alternative theories, cancer is caused by
damage too [58]. So damage is involved in cancer.
There are some exceptions, mostly related to embryonic
cells. Also, in theory, extra-genetic alterations such as
stable activation of oncogenic pathways via positive
feedback loops can contribute to malignant phenotype
[59]. Finally, positive feedback loops could be
established between cancer and normal cells [59-61].
But in general molecular damage is a key factor in
cancer origin. In agreement, cancer is associated with
genetic instability [59, 62-69].

Not decline but robustness

Due to genetic instability, cancer cells accumulate high
levels of unrepaired damage, resulting in genomic
mutations and epigenetic alterations as well as
aneuploidy [36-49, 70-80]. Despite of accumulation of
damage, cancer is neither decline nor ‘wear and tear’.
Cancer cells are robust and aggressive. Cancer cells
damage organs, thus killing organism. If cancer cells
with all damage are so robust, then how possibly aging
of normal cells could be “a decline due to accumulation
of molecular damage”. In fact, it does not.
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Immortality of cancer cells

Cancer is associated with cellular immortality [38, 81-
88]. Not only cancer cells can become cell lines but also
they can become free-living organisms [89-96]. Such
free-living cancer cells spread from one animal to
another. Thus, venereal sarcoma in dogs spread as
unicellular mammalian organisms for several millennia,
once originated from a single cancer cell [89-96]. Thus
accumulation of damage is associated with cellular
immortality.

Damage is not sufficient to cause cancer

However, molecular damage is not sufficient either to
cause cancer or to hurt organism. This damage is
multiplied billions of times via cell replication. Also,
cells with random mutations undergo non-random
selection (Figure 1).

Multiplication and selection

A 1 cm tumor contains 10° (1 billion) cells. Therefore,
damage does not passively accumulate but is actively
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multiplied. Cells undergo clonal selection, analogous to
Darwinian selection [70, 97-100]. Importantly, most
mutations are so called “passenger” mutations that
remain random and useless [72, 79, 80, 101]. But
nevertheless they do not decrease cell vitality.

Selective microenvironment

Oncogenic mutations occur randomly. Cancer arises
when cellular microenvironment favors oncogenic
mutations, creating selective advantage to cells bearing
oncogenic mutations. For example, carcinogens not
only damage DNA but also cytostatic to normal cells,
thus favoring selection of oncogenic mutations that
render cells resistant to cytostatic/toxic carcinogens
[102, 103]. This is especially apparent with non-
damaging carcinogens such as phorbol esters [104].
Cancer therapy can select for additional oncogenic
mutations (such as loss of p53), rendering cancer cells
not only drug resistant but also increasingly oncogenic
[102, 103, 105-108]. Inflammation and chronic
infections also favor cancer [109-121]. And the aging
microenvironment favors cancer [122-128].
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Figure 1. From random damage to cancer. Random damage undergoes multiple rounds of replication and
selection. Aging is one of selection forces that favors cells with oncogenic mutations. Cancer cell is characterized
by (a) activation of growth-promoting pathways such as mTOR and (b) loss of cell cycle (CC) control. Isolated
activation of mTOR favors senescence, whereas isolated cell cycle progression may trigger apoptosis.
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Aging as selective force

Organismal aging is the most important risk factor in
common cancers such as prostate, breast, colon, gastric,
lung, pancreatic, skin, brain, thyroid (and so on) cancers
as well as melanomas and certain leukemias. Calorie
restriction [129-137] and rapamycin [138-141], which
decelerate aging, also postpone cancer. Why does aging
favors cancer? One explanation is that aging stromal
cells secrete factors that promote growth of pre-cancer
cells [122, 123, 142-144] and aging is associated with
pro-inflammation that favors cancer growth [145-147].
The pro-inflammatory NF-kB pathway is involved in
both DNA damage response (DDR), cancer and aging
[60, 147-156].

One additional explanation is that chronic
overactivation of mTOR renders normal cells
irresponsive  to growth factors [157]. (In fact,

mTOR/S6K renders cells resistant to insulin and growth
factors [158, 159]). Then, cancer cells, which are
growth  signal- independent, acquire selective
advantage. In theory, by restoring responsiveness of
normal cells to mitogenic signals, treatment with
rapamycin can eliminate selective advantage for cancer
cells. It was predicted that rapamycin can restore
responsiveness of aging cells [157]. In fact, mMTOR may
cause exhaustion of the proliferative potential of stem
cells and, in some studies, rapamycin improved the
responsiveness of aging stem cells and immune cells
[160-163]. As an example, activation of mTOR
promoted leukemia-initiated cells, while depleting
normal hematopoietic stem cell. Rapamycin not only
depleted leukaemia-initiating cells but also restored
normal stem cell function [160, 164]. Thus decreased
proliferative potential of normal cells is associated with
selective advantage to cancer cells.

Non-random activation of the PI3K/mTOR pathway

The PI3K/mTOR pathway is universally involved in
cancer [37, 165-180]. It is activated by mutations in
PI3K, Ras, Raf, non-receptor and growth factor receptor
kinases and autocrine growth factors [165, 177, 181,
182]. Also, inactivation of tumor suppressors such as
PTEN, AMPK, TSC2, LKBI1, NF1 causes activation of
this pathway [160, 169, 183-191]. In addition, the
hypertrophic effect is often achieved via activation of
downstream mTOR targets, translation factors [178].
Finally, p53, which is lost in cancer, is also a suppressor
of the mTOR pathway [192-201]. Therefore, it can
suppress conversion of cell cycle arrest to senescence
[198-204]. In turn, the GF/PI3K/Akt/mTOR pathway
drives cellular mass growth, hypersecrtory phenotype,

HIF-1 expression, angiogenic phenotype, high levels of
glycolysis and biosyntesis (metabolic switch) and
apoptosis avoidance [16-35, 205-208]. In other words,
it is involved in most of hallmarks of cancer [38, 88],
with a notable exception of loss of cell cycle control.
On the other hand, the mTOR pathway is involved in
senescent phenotype. Therefore, the second alteration
in cancer is deactivation of cell cycle checkpoints. Thus
cancer cells can be viewed as cycling senescent cells.

Avoiding cell cycle arrest

In order to proliferate, cell with TOR-activating
oncogenes must disable cell cycle control. Inactivation
of tumor suppressors such p53, Rb, pl16 and activation
of c-myc, cyclins D and E, all disable cell cycle control,
allowing “pro-senescent” cancer cell to proliferate [209-
216]. Still, acute DNA damage, anticancer drugs and
induction of p21 or p16 cause cell cycle arrest. Arrested
cancer cells rapidly become senescent (geroconversion),
revealing their pro-senescent phenotype.

Oncogenic transformation and gerogenic conversion

There are non-mutually exclusive ways to depict
oncogenic transformation, as complementary activation/
disabling of signaling pathways [88, 217-225]. Here to
compare cancer with aging, [ view oncogenic
transformation as (a) activation of growth-promoting
pathways such as mTOR and (b) loss of cell cycle
control. Growth promoting pathways can drive either
growth or aging, whereas avoidance of cell cycle arrest
precludes aging (Fig. 1). In quiescent cells, activation of
growth-promoting pathways (such as mTOR) converts
quiescence into senescence, a process named gerogenic
conversion or geroconversion [226, 227]. In
proliferating cells, mTOR is fully activated. Induction
of cell cycle arrest, without inhibition of mTOR causes
gerogenic conversion too. When cell cycle is arrested,
growth-promoting pathways drive hypertrophy and
aging instead of growth. The difference between
quiescence and senescence was recently discussed in
detail [227]. Cellular hyper-functions and feedback
signal resistance are manifestations of cellular
senescence/aging that lead to age-related diseases [227].
These hallmarks result from excessive activation of
signaling pathways not from accumulation of damage.

Why aging is not caused by accumulation of damage

To harbor the active mTOR pathway, cancer cells
undergo multiple rounds of selection. In other words,
numerous random mutations are selected for non-random
activation of mTOR. In contrast it is resting non-dividing
cells such as liver, muscle, fat, connective tissue, neurons
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that undergo aging (geroconversion) in the organism. Not
only levels of molecular damage are low in normal cells,
but also there is no amplification and selection.  So
random damage hardly can cause non-random activation
of mTOR. Noteworthy, calorie restriction (CR) inhibits
mTOR. Even short-term CR suppresses cellular
senescence in the organism [228, 229].

Extragenetic activation of mTOR in aging

mTOR pathway is activated by growth factors,
hormones, mitogens, pro-inflammatory cytokines and
other secretory molecules and nutrients. Cells can
overactivate each other, via positive feedback loops. For
example in the liver and fat, hyper-active mTOR causes
insulin-resistance, which in turn leads to activation
mTOR in beta-cells, which produce insulin. Insulin
further activates mTOR in the liver and fat.

DNA damage response (DDR) and aging

In proliferating cells, mTOR is fully activated. Acute
DNA damage induces DDR and cell cycle arrest. If
mTOR is still active, such cells undergo geroconversion.
Rapamycin and other inhibitors of the mTOR pathway
decelerate geroconversion [198, 200, 206, 226, 230-
236]). This is how accelerated senescence is usually
induced in proliferating cells (in cell culture)._However,
in quiescent cells with inactive mTOR, DNA damage
does not induce sensecence, whereas activation of mTOR
does [226, 237].

In oncogene-induced senescence (OIS), DDR causes cell
cycle arrest, leading to senescence [238-245]. Note-
worthy, most oncogenes that induce senescence (Ras,
Raf, MEK, Akt and so on) activate the mTOR pathway.
We can call them TOR-activating oncogenes or
gerogenes [14], because they are involved in aging from
cells to organisms [14, 246, 247]. Loss of PTEN also
activates the mTOR pathway, causing senescence [243].
In OIS, oncogenes induce cell cycle arrest but not
necessary DNA damage or even DDR [248, 243, 249].
Furthermore, atypical DDR can occur without DNA
damage (pseudo-DDR) [231, 236, 250-256]. DDR path-
ways and the mTOR pathway are interconnected [257-
260]. And it seems that pseudo-DDR and DDR are
markers of cellular hyper-activation associated with sene-
scence [145] and can be blocked by rapamycin [231].

Cancer prevention and therapy

Prevention of DNA damage can decrease cancer
incidence. For example, non-smoking prevents
smoking-induced cancer. Also, cancer can be prevented
by decelerating the aging process by calorie restriction

and rapamycin. Both calorie restriction and rapamycin
delay cancer. Although rapalogs can directly affect
cancer cells, rapalogs are only modestly effective as
anti-cancer therapy [168, 261, 262], compared with
their dramatic preventive effects. In any case, cancer
can be prevented without decreasing levels of molecular
damage. Furthermore, DNA damaging drugs are
cornerstone of cancer therapy. And these drugs are also
carcinogens, because anti-cancer and carcinogenic
effects are two sides of the same coin [103].

CONCLUSION

Although molecular damage is typically necessary for
cancer initiation, this damage limits life span not
because of cellular decline but because of cellular
robustness. Damage undergoes multiplication and
selection. Aging by itself is a selective force that favors
cancer probably because aging cells are signal resistant,
thus providing selective advantage to cells that by-pass
the need in mitogenic signals. In addition to non-
random selection for oncogenic mutations, cancer cells
accumulate even higher levels of random “passenger”
mutations. Despite that cancer cells are robust. It must
be expected that a lower rate of DNA damage in normal
cells cannot cause cellular decline. Yes, molecular
damage accumulates but is not a driving force for aging.
Aging would occur in the absence of any molecular
damage. On the other hand, yes, molecular damage is
involved in something like cancer that can limit lifespan
in mammals to some extend. Noteworthy, worms and
flies do not die from cancer. Still they undergo
PI3K/TOR-dependent aging [263-269].

As already discussed, if quasi-programmed TOR-driven
aging would be eliminated, thus extending lifespan,
then accumulation of molecular damage would become
life-limiting [10]. In any case, in mammals, cellular
aging (characterized by cellular overactivation,
hyperfunction and secondary signal resistance) can
cause diseases, which lead to organ damage. And
cancer, an age-related disease, is not an exception: it
kills not because cancer cells fail due to decline but
because these cells damage organs. Perhaps, cancer is
not the only one damage-related disease among aging-
dependent conditions. But a subtle interference of
molecular damage with TOR-driven aging will be a
topic for another article, which will discuss the intricate
relationship between non-random organ damage and
random molecular damage.
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