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Abstract: Metabolic syndrome, a network of medical disorders that greatly increase the risk for developing metabolic and
cardiovascular diseases, has reached epidemic levels in many areas of today’s world. Despite this alarming medicare
situation, scientific understandings on the root mechanisms of metabolic syndrome are still limited, and such insufficient
knowledge contributes to the relative lack of effective treatments or preventions for related diseases. Recent
interdisciplinary studies from neuroendocrinology and neuroimmunology fields have revealed that overnutrition can
trigger intracellular stresses to cause inflammatory changes mediated by molecules that control innate immunity. This type
of nutrition-related molecular inflammation in the central nervous system, particularly in the hypothalamus, can form a
common pathogenic basis for the induction of various metabolic syndrome components such as obesity, insulin resistance,
and hypertension. Proinflammatory NF-kB pathway has been revealed as a key molecular system for pathologic induction
of brain inflammation, which translates overnutrition and resulting intracellular stresses into central neuroendocrine and
neural dysregulations of energy, glucose, and cardiovascular homeostasis, collectively leading to metabolic syndrome. This
article reviews recent research advances in the neural mechanisms of metabolic syndrome and related diseases from the
perspective of pathogenic induction by intracellular stresses and NF-kB pathway of the brain.

INTRODUCTION: Brain inflammation in blood pressure, which are collectively called metabolic
metabolic syndrome syndrome [13-19]. Thus, early therapeutic and

preventive interventions against metabolic syndrome
Looking back upon the time when the human species may represent an economic and effective strategy to
had to spent tremendous efforts to gather enough food control the deleterious outcomes of T2D and CVDs.
for survival, there is no doubt that modern However, there seems to be little progress in this aspect,
industrialization has succeeded at making many choices largely due to insufficient understandings of the
of calorie-abundant food easily available with little underlying root mechanisms of these disorders.
physical efforts. However, this over-correction of food However, cross-field studies from endocrinology and
crisis has led to an opposite pattern of medical problems immunology have begun to change this landscape
by introducing a worldwide outbreak of overnutrition- considerably since the last decade. A milestone
related diseases such as obesity, type 2 diabetes (T2D), discovery is that instead of merely being a contributor
and cardiovascular diseases (CVDs) [1-7]. While this to energy excess, overnutrition has been recognized as
overnutrition-featured social economic environment an independent environmental factor that is targeted by
will continue to exist, the health consequences are hefty innate immune system to trigger an atypical form of
and can threaten the fundamental welfare of modern inflammation, which leads to metabolic dysfunctions at
humankind [8-12]. From the physiological perspective, cellular, organ, and systemic levels [20-33].
outbursts of these health problems are often preceded by Mechanistic studies further showed that such metabolic
a cluster of interconnected pathophysiological inflammation is related to the induction of various
abnormalities including obesity, insulin resistance, intracellular stresses such as mitochondrial oxidative
impaired glucose tolerance, dyslipidemia and high stress, endoplasmic reticulum (ER) stress, and
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autophagy defect under prolonged nutritional excess.
More recently, this intracellular stress—inflammation
process for metabolic syndrome has been established in
the central nervous system (CNS) and particularly in the
hypothalamus [28-46]. Importantly, the CNS and the
comprised hypothalamus are known to govern various
metabolic activities of the body including appetite
control, energy expenditure, carbohydrate and lipid
metabolism, and blood pressure homeostasis [47-63]. In
the following sections, we describe recent research
advances that address the roles of brain stress and
inflammation in metabolic syndrome and related
diseases from molecular, cellular, and physiological
perspectives, with a particular emphasis on the
comprised hypothalamus.

Brain oxidative stress and metabolic syndrome

Reactive oxygen species (ROS) refer to a class of
radical or non-radical oxygen-containing molecules that
have high oxidative reactivity with lipids, proteins, and
nucleic acids. There are many potential sources of ROS
in cells [64]. Mitochondria are the cellular organelles
that generate energy in the form of ATP. However, this
process is coupled with production and accumulation of
oxidant by-products such as superoxide anions (02-)
within mitochondria and cytoplasm. Thus in quiescent
cells, a large measure of intracellular ROS comes from
the leakage of mitochondrial electron transport chain
(ETC). Another major source of intracellular ROS is the
intentional generation of superoxides by nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase,
which are used by cells for phagocytic defense or
normal signaling. In addition, there are other ROS-
producing enzymes such as cyclooxygenases,
lipoxygenases, xanthine oxidase, and cytochrome p450
enzymes, which are involved with specific metabolic
processes. To counteract the toxic effects of molecular
oxidation by ROS, cells are equipped with a battery of
antioxidant enzymes such as superoxide dismutases,
catalase, peroxiredoxins, sulfiredoxin, and aldehyde
dehydrogenases. When the production and clearance of
ROS is balanced at a physiological homeostatic level,
ROS does not pose a threat to cells. In fact,
physiological levels of intracellular ROS can be
normally involved in certain cell functions, such as
membrane ion transport, generation of intracellular
Ca2+ wave, activation of protein kinase, and regulation
of gene expression [65]. However, when ROS
homeostasis is disrupted due to various environmental
or pathological factors, excessive ROS are accumulated
in the mitochondria and cytoplasm — a condition
referred to as intracellular oxidative stress, which can
cause oxidative damages of cells and disease
consequences [66-71]. Indeed, intracellular oxidative

stress has been indicated to contribute to metabolic
syndrome and related diseases, including T2D [72;73],
CVDs [74-76], neurodegenerative diseases [69;77-80],
and cancers [3;81].

The brain utilizes a large amount of oxygen and ATP to
support its normal functions, resulting in a high
susceptibility to oxidative stress [68;70;71;82]. Indeed,
intracellular oxidative stress is highly associated with
the development of neurodegenerative diseases [69] and
brain aging [83], suggesting that CNS is an important
site targeted by oxidative stress. This understanding
brings up a question of whether brain oxidative stress
could play an important role in the pathogenesis of
metabolic diseases, given that the brain and particularly
the hypothalamus are the central regulators of whole-
body energy and metabolic homeostasis. Despite that
research exploration in this regard has been very
limited, there is evidence in the literature supporting
this hypothesis. For example, dietary obesity was found
to induce NADPH oxidase-associated oxidative stress in
rat brain [84], indicating that brain oxidative stress
could potentially mediate the pathogenesis of
overnutrition-related metabolic diseases. Other more
direct evidences include that mitochondrial dysfunction
in hypothalamic proopiomelanocortin (POMC) neurons
causes central glucose sensing impairment [85], and
brain mitochondrial dysfunction induced by genetic
deletion of peroxisome proliferator-activated receptor
coactivator la (PGC-1a) disrupts central regulation of
energy homeostasis [86]. Thus, the role of brain
oxidative stress in the development of metabolic
diseases represents a new and highly interesting
research topic. Overall, intracellular oxidative stress in
the brain is potentially widely implicated in the
pathogenesis of metabolic syndrome and related
diseases, and defining the molecular and cellular
pathways upstream and downstream of brain oxidative
stress will significantly advance the mechanistic
understandings of these diseases.

Brain ER stress and metabolic syndrome

Endoplasmic reticulum (ER) is the cellular organelle
responsible for protein synthesis, maturation, and
trafficking to secretory pathways. Since cellular
metabolic demands undergo fluctuations depending on
systemic physiological conditions, ER uses its unfolded
protein response (UPR) machinery to fine tune its
protein synthesis, folding, and secretion accordingly
[87]. Three ER membrane-associated protein sensors,
PKR-like endoplasmic reticulum kinase (PERK),
inositol requiring enzyme-1 (IRE1), and activating
transcription factor-6 (ATF6) act as protein sensors to
initiate three branches of UPR pathways. When there is
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no high demand for protein production, these sensors
are bound by chaperone protein BiP/GRP78 and stay in
an inactive state. However, when there is an increase in
the amount of newly synthesized protein or an
accumulation of misfolded proteins in ER lumen, BiP is
removed, resulting in activation of PERK and IRE1 and
their downstream signaling cascades [87]. Activation of
ATF6 additionally requires molecular reduction and
translocation to Golgi [88;89]. Activated IRE1 produces
an active form of transcription factor X-box binding
protein-1 (XBP1), which together with ATF6 initiates
transcription of genes that promote ER biogenesis,
enhance ER folding capacity, promote secretion of ER-
associated proteins, and facilitate degradation of
misfolded proteins [90;91]. The endoribonuclease
activity of IRE1 also directly decreases protein
translation by degrading mRNAs [92]. Activation of
PERK leads to phosphorylation and activation of
eukaryotic translational initiation factor 2o (elF2a),
which reduces global protein synthesis via competitive
inhibition of elF2B transcriptional complex [93].
Through a combination of these mechanisms, UPR can
efficiently resolve ER stress and maintain ER
homeostasis under physiological conditions.

However, when cellular metabolic challenges that
trigger ER stress is severe or persistent as in
pathological settings, UPR may not be sufficient to
neutralize ER stress, which leads to ER stress-related
pathological changes at molecular, cellular, and
systemic levels. Such unresolved ER stress can induce
cell apoptosis [87;94], which forms the pathogenic basis
for neurodegeneration, diabetic islet cell death,
atherosclerosis, myocardial infarction, and stroke [95-
99]. Alternatively, ER stress can activate cellular
inflammatory pathways which impairs cellular
functions and leads to metabolic disorders [100]. In
addition, ER stress causes cellular accumulation of ROS
to induce oxidative stress [101], and oxidative stress
reciprocally promotes ER stress by inhibiting ATF6
activation [88], both of which synergistically contribute
to the development of metabolic disorders. Indeed, ER
stress has been associated to obesity, insulin resistance,
T2D, CVDs, cancers, and neurodegenerative diseases
[23;95;100;102;103]. Due to the central role of brain in
metabolic control, the role of brain ER stress in
metabolic disease has come into focus in recent years.
Expanding the previous knowledge that brain ER stress
underlies neurodegenerative diseases [95], recent
studies have causally linked brain ER stress to the
development of metabolic syndrome and related
disorders such as overeating, obesity, leptin resistance,
insulin resistance, f cell dysfunction, and hypertension
[34;39;42;104;105] under conditions of overnutrition
[34;42] and related inflammatory insults [105]. These

findings have excitingly suggested brain ER stress as a
novel therapeutic target for metabolic syndrome, and
the underlying molecular basis of brain ER stress will
be further discussed in the following relevant sections.

Brain autophagy defect and metabolic syndrome

Autophagy is an evolutionarily conserved lysosomal
degradation pathway that plays essential roles in
maintaining cellular homeostasis and promoting cell
survival, growth, and differentiation against adverse
conditions [106;107]. To maintain a healthy and
functional intracellular environment, cells must
constantly clean up defective proteins (e.g., misfolded
proteins overflowing from ER stress) or damaged
organelles (e.g., dysfunctional mitochondria from
prolonged oxidative stress). This housekeeping function
is carried out by three protein degradative machineries —
ubiquitin-proteasome  system (UPS), chaperone-
mediated autophagy (CMA), and macroautophagy
(namely autophagy). UPS generally targets specific
short-lived proteins, and CMA only degrades proteins
containing particular peptide motifs. By comparison,
only autophagy has the capacity for bulk degradation of
long-lived cytosolic proteins and whole organelles. In
the latter case, special terms such as mitophagy [108],
reticulophagy [109], and pexophagy [110] were used to
describe autophagy of dysfunctional mitochondria, ER,
or excessive peroxisomes, respectively. Under normal
growth conditions, autophagy occurs at a basal level to
support cell growth, development and differentiation
[111-117]. However, under environmental stress such as
nutrient deprivation or hypoxia, autophagy is strongly
induced to breakdown macromolecules into reusable
amino acids and fatty acids for survival. From this
perspective, complete loss of autophagy is lethal in
experimental mice [114].

Tissue-specific impairment of autophagy, though not
lethal, leads to the development of diverse diseases such
as infection [118-120], cancer [121;122], muscle
disorders [123], heart diseases [124], neurodegenerative
diseases [115-117], and aging [125]. A common
pathological feature of these diseases is the formation of
intracellular aggregates from dysfunctional proteins or
organelles [107]. The role of brain autophagy defect in
metabolic syndrome has been nearly uninvestigated in
the past. However, such prediction is well reasoned.
First, studies of autophagy in specific peripheral tissues
such as liver [126-129], skeletal muscle [130], and
pancreatic B cells [131-133] have implicated autophagy
defect in the pathogenesis of metabolic syndrome such
as T2D and lipid disorders, with the only exception that
autophagy defect in fat cells can impair adipogenesis to
counteract fat expansion and the development of obesity
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[134;135]. Second, autophagy defect in the CNS has
been causally linked to a number of neurodegenerative
diseases including Alzheimer disease, Parkinson’s
disease, Huntington’s disease, and transmissible
spongiform encephalopathies [136-138], indicating an
indispensible role of autophagy in maintaining CNS

function. Indeed, we recently showed that intact
autophagy function is required for the hypothalamus to
properly control metabolic and energy homeostasis,
while hypothalamic autophagy defect leads to the
development of metabolic syndrome such as obesity
and insulin resistance [40].
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Figure 1. Brain stress and inflammation in the development of metabolic syndrome. Overnutrition
in the forms of high circulating levels of glucose, free fatty acid (FFA), and amino acids (AA) is the predominant
pathogenic inducer of central metabolic inflammation. Excessive nutrients transported into cells can pose
severe stresses on cellular metabolic machinery, affecting organelles such as mitochondria and endoplasmic
reticulum (ER) which are responsible for nutrient oxidation and protein synthesis, respectively. As a result,
intracellular reactive oxygen species (ROS) increase due to heightened mitochondrial activities, leading to
intracellular oxidative stress. In parallel, high levels of cellular metabolic activities demand increased protein
synthesis and folding by ER, leading to ER stress. Additionally, high levels of intracellular ROS from oxidative
stress can escalate ER stress. Prolonged oxidative stress and ER stress can cause intracellular accumulation of
dysfunctional mitochondria, ER, and other cytosolic proteins, leading to increased autophagy stress and
autophagic defect. All these intracellular stresses are activators of cellular proinflammatory kinases, among
which kB kinase (IKK) and c-Jun N-terminal kinase (JNK) have been implicated. Activation of these
proinflammatory pathways leads to transcription of inflammatory response genes via nuclear transcription
factors NF-kB and AP-1. ER stress can also directly induce transcription of inflammatory genes via activating
transcription factor X-box binding protein-1 (XBP1). Certain extracellular nutrient species can bind to toll-like
receptors to activate intracellular proinflammatory signaling. Furthermore, local or systemic inflammatory
cytokines can reinforce metabolic inflammation via cytokine receptor signaling. Such collective onset of
cellular inflammation impairs normal cellular functions, leading to central dysregulation of various
physiological processes across energy balance, glucose tolerance, and cardiovascular homeostasis, which
underlies the development of metabolic syndrome and related diseases.
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One lingering question is: what are the inducers of
hypothalamic autophagy defect in metabolic syndrome?
A plausible answer is brain autophagy defect may occur
secondarily to oxidative stress and ER stress in the
development of central metabolic dysregulations,
presumably when intracellular accumulation of
damaged mitochondria, ER, and misfolded proteins
exceeds the degradative capacity of autophagy
machinery. This hypothesis can be inferred from the
observation that metabolic disorders related to central
autophagy defect are late onset [40], and indeed
prolonged oxidative stress or ER stress has been shown
to impair autophagy function in disease milieu of cancer
or aging [139;140]. But obviously further experimental
investigations are needed to draw conclusions.

Brain immune receptors and metabolic syndrome

In addition to the primary roles of receptor-independent
intracellular stress pathways in overnutrition-induced
central metabolic dysregulations, immune receptor-
mediated pathways can also function in the
hypothalamic inflammatory mechanisms of metabolic
syndrome. In this regard, toll-like receptor (TLR)
pathway has received substantial research attentions.
TLRs are an important class of membrane-bound
pattern recognition receptors in classical innate immune
defense, primarily functioning to promote synthesis and
secretion of immune response molecules upon binding
by “non-self” molecules (e.g., pathogens) [141;142].
Most hypothalamic cell types including neurons and
glia cells express TLRs and thus can mediate innate
immune response to local or systemic inflammatory
stimuli at least through TLRs [143-145]. In the context
of metabolic dysregulations, overnutrition constitutes an
environmental stimulus that can activate TLR pathways
to mediate the development of metabolic syndrome
related disorders such as obesity, insulin resistance,
T2D, and atherosclerotic CVDs in rodents [146-157].
Isoforms TLRI1, 2, 4, and 6 may be particularly
pertinent to pathogenic signaling induced by lipid
overnutrition, since these receptors are hyper-responsive
to extracellular lipids as shown in studies on adipocytes,
macrophages and myocytes [147-150]. The pathogenic
significance of TLR signaling in metabolic syndrome
has recently been appreciated in the CNS [36;37]. As
shown in the literature, hypothalamic TLR4 and
downstream inflammatory signaling are activated in
response to central lipid excess via direct intra-brain
lipid administration or HFD-feeding [36], while
overnutrition-induced metabolic derangements such as
central leptin resistance, systemic insulin resistance, and
weight gain can be significantly prevented in mice with
brain-specific inhibition of TLR4 signaling [37].
Furthermore, brain-specific inhibition of TLR4

signaling [37] reproduced the protective effects of
whole-body TLR4 deficiency [36;154] against
overnutrition. All these evidences based on brain TLR
signaling further support the notion that CNS is the
primary site for overnutrition to cause the development
of metabolic syndrome.

In addition to TLRs, cytokine receptors can also
participate in the central induction of metabolic
syndrome and related diseases, given that a prominent
pathologic feature of these diseases, especially in the
late stage, is the prevalent presence of cytokines in the
circulation and various tissues of the body [20-30].
These circulating cytokines can limitedly travel to the
hypothalamus through the leaky blood-brain barrier
around the mediobasal hypothalamus to activate
hypothalamic cytokine receptors. In addition to
systemic cytokines, local inflammation in the brain
induced by intracellular stresses can lead to local
production and release of cytokines, which can work on
cytokine receptors in adjacent neural cells. Through
these combined actions, brain cytokine receptor
signaling can help sustain and/or augment brain
inflammation to underlie the escalation of metabolic
disorders.

Evidences supporting the involvement of cytokine
receptors in central metabolic dysregulations mainly
come from studies using central administration of
cytokines or genetic deletions of cytokines or receptors.
However, both approaches have pros and cons. The
pharmacological studies, while having the advantage of
directly targeting the brain, have major issues with dose
usage. Most of the time, the doses applied did not
reflect the pathophysiological levels in metabolic
syndrome and related diseases, which unintentionally
skewed the interpretations of their biological effects.
The genetic knockout approach, while providing clean
loss-of-function models to infer gene functions, has
major limitations with site-specificity, i.e., most
cytokine or cytokine receptor knockout models
available now target the whole body instead of a
specific tissue or cell type. Nonetheless, significant
evidences have  been  recently  documented
demonstrating the role of cytokine receptor pathways in
the development of metabolic syndrome components.
For example, central administration of TNF-o at low
doses faithfully replicated the effects of central
metabolic inflammation in enhancing eating, decreasing
energy expenditure [158;159], and causing obesity-
related hypertension [38]. Supportively, genetic
deficiency of either TNF-a [160;161] or TNF-a receptor
[158;162] prevented overnutrition from inducing
obesity or insulin resistance in mice. Resistin, an
adipocyte-derived proinflammatory cytokine, has been
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found to promote hepatic insulin resistance through its
central actions [163]. On the contrary, anti-
inflammatory cytokines such as interleukin-10 or
interleukin-6 were found to mediate the metabolic
benefits of exercise through reducing hypothalamic
inflammation [164]. Taken together, using specific
forms, both TLR pathways and cytokine receptor
pathways are involved in central inflammatory
mechanism of metabolic syndrome and related diseases.
Meanwhile, future studies are still needed to delineate
the molecular signaling and potential neural cell type-
specificity of these programs.

Brain oxidative stress and IKKB/NF-kB signaling in
metabolic syndrome

Mammalian IkB kinase p (IKKP) and nuclear factor-xB
(NF-xB) comprise a master proinflammatory pathway
that has pivotal roles in classical innate immune
response [165]. In quiescent state, NF-kB resides in the
cytoplasm in an inactive form due to inhibitory binding
by IxBa protein. A wide range of extracellular immune
stimuli can induce IKKP activation via receptor-
mediated pathway, leading to IxkBa phosphorylation and
degradation and subsequent release of NF-«xB activity.
Activated NF-kB enters the nucleus to induce
transcription of a myriad of genes that mediate diverse
cellular processes such as immunity, inflammation,
proliferation, apoptosis, and cellular senescence [166].
Research in the past decade has found that activation of
IKKB/NF-kB proinflammatory pathway in metabolic
tissues is a prominent feature of various metabolic
disorders related to overnutrition [20-33]. However, this
type of inflammation has unique features compared to
classical (e.g., pathogen-induced) inflammation. For
instance, it happens in metabolic tissues, it is mainly
associated with  overnutrition-induced = metabolic
derangements, and most importantly, it is relatively
low-grade and chronic. Hence, a special name of
“metabolic inflammation” or “metaflammation” is
given to refer to this type of atypical inflammation
[28;29]. The biological effects of NF-kB-mediated
metabolic inflammation are deleterious at cellular and
tissue levels, including impairments of normal
intracellular signaling and disruptions of metabolic
physiology. More recently, this paradigm of IKKp/NF-
kB-mediated metabolic inflammation has been
identified in the CNS — particularly the comprised
hypothalamus, which primarily accounts for to the
development of overnutrition-induced metabolic
syndrome and related disorders such as obesity, insulin
resistance, T2D, and obesity-related hypertension [28-
46]. To understand the pathogenic signaling cascade
mediated by IKKB/NF-kB in the CNS, a keen research
effort has been made to elucidate the intracellular

changes that bridge overnutrition and hypothalamic NF-
kB activation. Albeit not fully developed, existing
evidences have pointed to intracellular oxidative stress
and mitochondrial dysfunction as upstream events that
mediate hypothalamic NF-kB activation in a receptor-
independent manner under overnutrition.

NF-kB is a redox-sensitive transcription factor whose
activity is affected by cellular oxidative state [64;167].
A major mechanism that oxidative stress can activate
NF-«xB is through  ROS-induced  alternative
phosphorylation of IkBa which abolishes its inhibition
of NF-xB [168-172]. Additionally, oxidative stress can
activate NF-kB pathway through oxidative inactivation
of NF-xB pathway-related phosphatases such as IKK
phosphatases and PTEN (phosphatase and tensin
homolog, an Akt phosphatase), which causes
upactivation of NF-kB pathway kinases such as IKKs
(0, B, and y) and Akt, leading to NF-«xB activation [173-
175]. Activated NF-kB can induce cytotoxic products
that exacerbate inflammation and oxidative stress and
promote apoptosis [176], leading to oxidative stress-
induced cell dysfunction or cell death, respectively [64].
In the context of metabolic syndrome, oxidative stress-
related NF-xB activation in metabolic tissues or
vascular systems has been implicated in a broad range
of metabolic syndrome-related diseases, such as
diabetes, atherosclerosis, cardiac infarct, stroke, cancer,
and aging [177-184]. In the CNS, the potential link
between oxidative stress and NF-kB-mediated
inflammation in central metabolic dysregulations has
not been adequately studied. However, such a
mechanistic connection can be reasonably hypothesized
based on several lines of evidence. First, overnutrition is
an environmental inducer for intracellular oxidative
stress regardless of tissues involved [7], because
excessive nutrients, when transported into cells, directly
increase mitochondrial oxidative workload, which
causes increased production of ROS by mitochondrial
ETC. Second, oxidative stress has been shown to
activate NF-xB pathway in neurons or glial cells in
several types of metabolic syndrome-related neural
diseases, such as stroke [185], neurodegenerative
diseases [186-188], and brain aging [189]. Third, central
nutrient excess (e.g., glucose or lipids) has been shown
to activate NF-xB in the hypothalamus [34-37] to
account for overnutrition-induced central metabolic
dysregulations.  Additionally, mammalian histone
deacetylase Sirtuin 1 has been shown to protect against
metabolic syndrome related diseases such as
atherosclerosis and aging, and such metabolic protective
effects are associated with inhibition of ROS production
and suppression of NF-xB activation [190;191]. Thus,
intracellular oxidative stress seems to be a likely
pathogenic link that bridges overnutrition with NF-xB
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activation leading to central metabolic dysregulation.
Finally, because activation of NF-kB pathway can
reciprocally reinforce intracellular oxidative stress
through induction of ROS-producing enzymes [176],
the vicious cycle between oxidative stress and NF-kB
activation may account for the refractory nature of
overnutrition-induced metabolic  disorders. Future
studies of testing the pathogenic model of the
connection between oxidative stress and NF-xB in the
brain will help form a more complete understanding of
the central mechanisms of overnutrition-induced
metabolic diseases.

Brain ER stress and IKKP/NF-kB signaling in
metabolic syndrome

UPR signaling of ER can actively respond to changes of
cellular nutrient state such as increased protein
synthesis, glucose or energy deprivation, hypoxia, or
even elevated intracellular lipid storage [87]. The
underlying molecular events of UPR signaling include
controlled transcription of many genes that are
important for glucose and lipid metabolism [100]. In
this context, ER is positioned to coordinate nutrient
sensing with metabolism at the cellular level to
safeguard systemic metabolic homeostasis. In support
of this model, mice that are deficient in UPR pathways,
such as PERK-deficient mice [192], elF2a mutant mice
[98;193] or mice with XBP1 haploinsufficiency
deficiency [194], are prone to ER stress and develop
metabolic disorders such as impaired glucose tolerance,
insulin resistance, islet cell dysfunction, and increased
adiposity. Along the same vein, overnutrition can
present the cell with a metabolic overload that exceeds
the physiological adaptive range of UPR, resulting in
the development of ER stress and systemic metabolic
disorders. Indeed, chronic ER stress in peripheral
metabolic tissues such as adipocytes, liver, muscle, and
pancreatic cells is a salient feature of overnutrition-
related diseases [100;194;195].

Further interests were diverted to how ER stress
transduces overnutrition signals into metabolic
derangements, and metabolic inflammation was brought
upon as a mediator, as all three branches of UPR
pathways are linked to proinflammatory IKKpB/NF-xB
or JNK signaling [196-199]. However, it is difficult to
mechanistically dissect the relationship between
overnutrition, ER stress, and inflammation in peripheral
tissues using animals that have already developed these
abnormalities under chronic overnutrition, because
obesity (the most common outcome of chronic
overnutrition) and the associated systemic inflammation
by themselves are potent inducers of ER stress. By
contrast, this question has been well addressed in the

CNS. Two recent studies showed that overnutrition
induces ER stress as well as IKKB/NF-kB activation in
the hypothalamus of mice fed with a high-fat diet
(HFD) [34], and central administration of ER stress
inducer mimicked HFD feeding to activate
hypothalamic NF-kB in mice on a normal chow diet
[34;39]. More importantly, intra-third ventricle infusion
of ER stress inhibitor suppressed the activation of
hypothalamic NF-«xB by HFD feeding [34],
demonstrating that ER stress can act as a downstream
effector of overnutrition to induce NF-kB-mediated
inflammation in the brain. In the meanwhile, a sustained
development of ER stress appears to depend on
IKKB/NF-kB pathway activity, because neither HFD
feeding nor central administration of chemical ER stress
inducer was able to induce hypothalamic ER stress in
mice with central inhibition of IKKB/NF-kB pathway
[34;39]. Further bolstering the reinforcing effect of NF-
kB activation on ER stress, TNF-a, a product of NF-xB
activation, was shown to induce ER stress in the
hypothalamus, although the extent of stress induction by
TNF-a itself was less than complete [105]. Finally, ER
stress can indirectly promote inflammation via
induction of oxidative stress [100;101]. Altogether,
recent literature supports a model that brain ER stress
and NF-kB activation reciprocally promote each other
in the development of central metabolic dysregulations.
Future studies may reveal more proinflammatory
kinases associated with brain ER stress signaling under
overnutrition, and different brain cell types may
preferentially employ different signaling cascades in
disease development.

Brain autophagy defect and IKKp/NF-kB signaling
in metabolic syndrome

As a stress-response mechanism against adverse growth
conditions such as nutrient depletion, and as a
machinery to  maintain  normal intracellular
environment, autophagy is key to cell/organism survival
and proper functioning [106;107]. Unsurprisingly,
autophagy defect has been linked to the development of
a number of systemic diseases [115-125] including
metabolic syndrome, T2D, and lipid abnormalities [126-
133;200]. Of note, in the majority of these cases, the
underlying pathogenesis lies in the failure of autophagy
machinery to efficiently remove defective proteins or
damaged organelles from the cytosol [107]. In terms of
the pathogenic root of autophagy defect, chronic
intracellular stress and particularly ER stress seem to be
the critical upstream event. Indeed, ER stress has been
shown to activate autophagy in mammalian cells
through signaling crosstalk between autophagy and
canonical UPR pathways [201;202]. Animal studies
have shown that ER stress or oxidative stress induces
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adaptive autophagy upregulation in the early phase,
which helps restoring intracellular homeostasis by
disposing a number of harmful molecules such as
unfolded or misfolded proteins in ER lumen, cytosolic
proteins damaged by ROS, or even dysfunctional ERs
and mitochondria [203-205]. However, when
intracellular stresses remain unresolved, prolonged
autophagy upregulation progresses into autophagy
defect [139;140]. Given that ER stress pathway is
closely linked to proinflammatory pathways mediated
by IKKB/NF-kB [196-198] or JNK [199], it is logical to
predict that autophagy changes are linked to these
inflammatory pathways. In parallel, autophagy pathway
can relate to proinflammatory signaling via oxidative
stress pathway, as shown by a very recent report [200]
that autophagic counteraction of intracellular oxidative
stress can suppress cellular inflammation by inhibiting
oxidative  stress-induced NLRP3  inflammasome
activation. Indeed, recent literature has shown that
autophagy defect can induce NF-kB-mediated
inflammation in association with the development of
cancer or inflammatory diseases (e.g., Crohn’s disease)
[207-211].

The connection between autophagy defect and
proinflammatory activation of NF-kB pathway can also
be inferred in metabolic syndrome, since both
autophagy defect [126-133;200] and NF-kB activation
[20-33] are implicated in the development of
overnutrition-related metabolic diseases. This notion
was recently experimentally proved in the CNS [40].
Mice with hypothalamic knockdown of autophagy-
related protein-7 (Atg7) developed hypothalamic
autophagy defect and concomitant activation of
hypothalamic  IKKB/NF-xB  pathway. Moreover,
hypothalamic  autophagy defect can promote
inflammatory activation to exacerbate the development
of HFD-induced obesity and metabolic comorbidities
[40]. The linear relationship from autophagy defect to
NF-kB-mediated  metabolic  inflammation  was
demonstrated by the observation that hypothalamus-
specific IKK[ ablation abolished the deleterious effects
of hypothalamic autophagy defect on central metabolic
regulations [40].

Brain immune receptors and IKKfB/NF-kB signaling
in metabolic syndrome

Both TLR pathway and cytokine receptor pathways are
closely related to IKKB/NF-kB signaling in the central
pathogenesis of metabolic syndrome. Overnutrition,
especially in the form of HFD feeding, was shown to
activate TLR4 signaling and downstream IKKB/NF-xB
pathway [36;37], leading to metabolic derangements
such as central leptin resistance, systemic glucose

intolerance, and weight gain [37]. In the study by
Kleinridders et al [37], the critical involvement of TLR4
signaling was demonstrated through brain-specific
deletion of myeloid differentiation factor 88 (MyD88) —
an essential signaling adaptor for TLR pathways to
activate  downstream  proinflammatory  signaling
mediated by IKKB/NF-xkB or JNKs [212;213].
However, inhibition of central TLR4 signaling through
brain-specific MyD88 deletion only abolished HFD-
induced IKKB/NF-kB activation but not JNK activation
in mouse hypothalamus [37], suggesting that
differential upstream signaling mechanisms exist for
different proinflammatory kinase pathways in central
metabolic inflammation. Interestingly, Gorina et al
[214] reported a similar signaling interplay in astrocyte
inflammation, i.e., TLR4 activation leads to MyD8&8-
dependent NF-«xB activation in early phase and MyD88-
indepdnent MAPK/INK pathway in late phase.
Together these studies point to NF-kB as an immediate
signaling effector for TLR4 activation in central
inflammatory response. In addition to directly activating
proinflammatory kinase pathways upon overnutrition,
TLR4 activation has been shown to induce intracellular
ER stress to indirectly cause metabolic inflammation in
the hypothalamus [36;105]. Thus, central TLR4-NF-xB
pathway may represent one of the early receptor-
mediated events in overnutrition-induced central
inflammation.

The close link between IKKPB/NF-xB and cytokine
receptor signaling in metabolic inflammation is beyond
doubt, given that many cytokines and their receptors are
both upstream activating components and downstream
transcriptional targets of NF-kB activation [176]. For
example, central administration of TNF-a at low dose
can mimic the effect of obesity-related inflammatory
milieu to activate IKKB/NF-xB proinflammatory
pathways, furthering the development of overeating,
energy expenditure decrease, and weight gain [34;159].
However, the physiological effects of IKKP/NF-kB
activation seem to be cell type-dependent, i.e.,
IKKB/NF-kB activation in hypothalamic agouti-related
protein (AGRP) neurons primarily leads to the
development of energy imbalance and obesity [34];
while in hypothalamic POMC neurons, it primarily
results in the development of hypertension and glucose
intolerance [38;39]. Thus, cautions should be taken
when inferring the biological effects of cytokine
receptor pathways in central metabolic inflammation.
IKKB/NF-kB activation has also been linked to cytokine
receptor-mediated inflammatory signaling in non-
neuronal cells. For instance, central administration of
interleukin-4 can induce microglial activation to
promote the development of hypothalamic inflam-
mation and resulting weight gain, yet these effects are
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abolished by central administration of IKKf inhibitor
[215]. Therefore, cytokine receptor signaling in glial
cells may join neuronal inflammation, possibly via a
paracrine mechanism, to cause the central dysregulation
of metabolic physiology. The crosstalk between glial
and neuronal cells in central metabolic inflammation
still represents an under-investigated topic.

Brain stress and therapeutic applications in obesity

The CNS, particularly the hypothalamus, is the central
regulator of energy and body weight balance [47-62].
This regulation critically depends on neurons that are
located at different hypothalamic metabolic sensing
centers, which through regulated release of
neuropeptides and neurotransmitters [216-222], control
downstream neuroendocrine and neural systems to
affect feeding and energy expenditure. The ability to
properly detect whole-body energy and nutrient states,
i.e., metabolic sensing, is crucial for these first-order
hypothalamic neurons to manage energy balance. At the
molecular level, metabolic sensing of neurons is
mediated critically by canonical leptin signaling via
JAK2/STAT3 pathway and insulin signaling via
PI3K/Akt pathway [47;53;58]. However, under
pathological conditions such as overnutrition-induced
intracellular metabolic stresses, neuronal
proinflammatory pathways are activated, which in turn
impairs leptin and insulin signaling, leading to neuronal
dysfunction and central body weight dysregulation
[223-230]. For example, HFD feeding-induced
activation of IKKB/NF-kB proinflammatory pathway in
the hypothalamus [34-37;40], whether its upstream
signaling event being ER stress [34;36], autophagy
defect [40], or TLR activation [36;37], ultimately leads
to increased energy intake, decreased energy
expenditure, and the development of obesity.
Accordingly, inhibition of hypothalamic IKKp/NF-kB
signaling effectively protects against these metabolic
disorders, as shown by various experimental animal
models including pharmacologic inhibition of
hypothalamic IKKP [35], brain-specific deletion of
IKKB [34], IKKB/NF-xB signaling effector SOCS3
[45;231] or TLR4 signaling adaptor MyDS88 [37], or
whole-body genetic deficiency of NF-kB subunit p50
[232] or TLR4 [36;154]. In fact, the therapeutic effect
of anti-inflammation against obesity condition has been
demonstrated in human subjects as well. In a
retrospective  case-control study, anti-inflammatory
intervention with aspirin was shown to significantly
promote weight loss in patients with T2D [233]. Also,
the appetite-suppressing and anti-weight gain effects of
rimonabant are associated with systemic decrease of
inflammatory response [234].

Brain stress and therapeutic applications in diabetes

The hypothalamus plays a central role in controlling
glucose homeostasis  through coordinating the
regulatory networks formed between multiple organs
including brain, liver, pancreas, adipocytes, and skeletal
muscles [55;235-239]. Specifically, metabolic signals
such as circulating leptin, insulin, gut hormone, and
nutrients act on certain hypothalamic neurons to inform
the brain of whole-body glucose homeostatic state.
These neurons in turn generate appropriate metabolic
orders through downstream neuroendocrine and neural
systems to control peripheral glucose metabolism [240].
In particular, AGRP neurons and POMC neurons of the
arcuate nucleus in mediobasal hypothalamus and
steroidogenic factor 1 (SF1) neurons in ventromedial
hypothalamus have been recently identified to employ
leptin and insulin signaling to regulate peripheral
glucose homeostasis [241-244]. Resembling the central
dysregulation of energy balance, overnutrition-induced
intracellular stresses and the ensuing cellular
inflammation impair the normal metabolic signaling in
these glucose-regulating neurons [245-248], leading to
central dysregulation of glucose homeostasis [249-251].
On the contrary, stress counteraction has been shown as
an effective therapeutic strategy against overnutrition-
related glucose disorders in a battery of animal models.
For example, ameliorating ER stress of obese mice
through genetic overexpression of UPR components
ATF6 [252], XBP1 [194], or ER chaperone proteins

GRP78 [253], ORP150 [254], or pharmacologic
administration of ER stress inhibitor
tauroursodeoxycholic acid (TUDCA) [195], all

improved glucose tolerance, insulin signaling, and
related lipid disorders. More excitingly, this organelle-
specific therapy has proven effective for human T2D
[255-257]. For example, TUDCA can improve liver and
muscle insulin sensitivity by approximately 30% in
obese men and women [258]. Stavudine, an antioxidant
molecule that reduces ROS production and enhances
mitochondrial function, can also increase muscle insulin
sensitivity in  humans [259]. Additionally, anti-
inflammation medications such as aspirin [260] and
salsalate [261;262] have proven effective against T2D
and related lipid disorders in clinical trials. Similarly,
antagonizing systemic proinflammatory factors such as
interleukin-1 [263] or TNF-a [264;265] also showed
therapeutic effects against T2D.

Brain stress and therapeutic applications in CVDs

Many clinical and epidemiologic studies have
demonstrated the therapeutic/preventive effects of anti-
cellular stress agents against CVDs. For example,
dietary supplementation of antioxidant vitamin E can

www.impactaging.com

106

AGING, February 2012, Vol.4 No.2



reduce the development of atherosclerosis through
increased production of oxidation-resistant low-density
lipoprotein [266]. Antioxidant compounds that can
reduce cellular oxidative stress and/or enhance
mitochondrial respiratory function, such as coenzyme
Q10, a-lipoic acid, and a-L-carnitine, have been shown
to protect against myocardial dysfunction [267] or
improve systolic blood pressure in patients with
coronary artery disease [268]. Moreover, an increasing
number of new cardiovascular drugs are being
developed which belong to the same antioxidant
category [269]. More recently, suppressing ER stress
has been proposed as a potential treatment strategy
against myocardial infarction and heart failure [99].
Brain stress, being a primary pathogenic basis of
metabolic syndrome, conceivably can underlie the
development of metabolic syndrome related CVDs.
However, because the concept of brain stress in
metabolic syndrome is a relatively recent establishment,
there have not been many mechanistic studies which
directly demonstrate their causal relationship or the
therapeutic potentials of inhibiting brain stress in CVDs.
Nonetheless, two very recent animal studies have
pointed to this possibility [38;39]. Overnutrition-related
metabolic  inflammation in the hypothalamus,
specifically in POMC neurons of the arcuate nucleus,
was found to underlie the development of obesity-
related hypertension in mice [38]. Furthermore, POMC
neuron-specific inhibition of this inflammatory pathway
was shown to protect against the development of
hypertension despite co-existing obesity or obesogenic
condition [38]. In a following study [39] by the same
group, brain ER stress was identified as the event
upstream of hypothalamic NF-kB activation in the
development  of  central  inflammation-induced
hypertension, and suppressing brain ER stress
effectively prevented the development of overnutrition-
induced blood pressure disorders.

CONCLUDING REMARKS

Research in the past decade has established that
metabolic syndrome can result from innate immune
activation in response to overnutrition. While this type
of inflammation exists broadly across different tissues,
the CNS is in a primary and wide-impact position for
the induction of metabolic syndrome by nutritional
inflammation. An inflammatory state in brain regulatory
centers such as the hypothalamus disrupts its metabolic
sensing function, which in turn affects downstream
neural and neuroendocrine regulation of a wide range of
physiological processes such as energy balance, glucose
metabolism, and cardiovascular homeostasis.
Dysregulations of these processes often happen
concurrently and manifest as a cluster of highly

associated metabolic disorders such as obesity, insulin
resistance, and hypertension. Research in the past few
years has significantly differentiated the hypothalamic
inflammatory pathways underlying these metabolic
disorders, and overnutrition-induced intracellular
stresses have been recognized as key activators of
metabolic inflammation in the hypothalamus. This new
knowledge not only provides a conceptual framework
for further dissecting the pathogenesis of metabolic
syndrome related diseases, but also indicates potential
interventional strategies of counteracting
neuroinflammation  against  metabolic  diseases.
Regardless of this exciting status quo, many important
questions still remain to be addressed experimentally. It
is fair to say that current understandings on the central
inflammatory mechanisms of metabolic syndrome and
related diseases are still in a primitive stage. However,
in light of its great significance from both biomedical
research and therapeutic application perspectives, we
expect major research endeavors being drawn to this
field and more advances being made in the near future.
We also anticipate that eventually these findings will be
translated into novel and effective
treatments/preventions against miscellaneous
overnutrition-induced metabolic diseases.
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