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Abstract: Faithful preservation of genome integrity is the critical mission of stem cells as well as of germ cells. Reviewed
are the following mechanisms involved in protecting DNA in these cells: (a) The efflux machinery that can pump out variety
of genotoxins in ATP-dependent manner; (b) the mechanisms maintaining minimal metabolic activity which reduces
generation of reactive oxidants, by-products of aerobic respiration; (c) the role of hypoxic niche of stem cells providing a
gradient of variable oxygen tension; (d) (e) the presence of hyaluronan (HA) and HA receptors on stem cells and in the
niche; (f) the role of HA in protecting DNA from oxidative damage; (g) the specific function of HA in protecting DNA in stem
cells; (h) the interactions of HA with sperm cells and oocytes that also may shield their DNA from oxidative damage, and
(e) mechanisms by which HA exerts the anti-oxidant activity. While HA has multitude of functions its anti-oxidant
capabilities are often overlooked but may be of significance in preservation of integrity of stem and germ cells genome.

Stem cells: keeping genotoxins out of the cell

Faithful preservation of genome integrity throughout
lifetime of the organism is the critical mission of the
long-term self-renewal stem cells. Several mechanisms,
both intrinsic to stem cells themselves as well as
extrinsic, provided by the microenvironment, (stem cell
niche) serve this purpose. One of the intrinsic
mechanisms is aimed to effectively exclude potentially
hazardous agents that enter the cell from outside. This
activity is mediated by high level of expression of
multidrug-resistance gene (MDRI)-encoded adenosine
triphosphate-binding cassette (ABC) transporter P-
glycoprotein (P-gp). This efflux machinery can pump
out variety of genotoxins in ATP-dependent manner [1].
There are over 30 members of ABC transporter super-
family genes, whose protein transcripts are able to
remove wide range of substrates out of the cell [2-
4].The degree of efflux activity correlates with
differentiation, namely the maximal activity are
expressing the most primitive long-term self-renewal

stem cells [5]. Another possible function for these
efflux pumps is the removal of small lipophilic
regulatory molecules such as steroids, whose presence
may activate growth or differentiation [6].

It should be noted that the exceptionally high activity of
the efflux pump provides a useful marker to identify
and isolate (sort out) stem and early progenitor cells.
This is being achieved using fluorescent efflux
substrates such as Hoechst 33342 [5,7,8] or rhodamine
123 [9,10] in conjunction with flow cytometry and
electronic cell sorting. Since retention of these
fluorochromes in stem cells is impeded due to their
rapid efflux, attributed primarily to MDRI activity [11],
stem cells can be recognized (and sorted out) as a
distinct cell subpopulation characterized by much
reduced fluorescence intensity. In the case of staining
with Hoechst 33342 the hematopoietic stem cells are
characterized by the reduced intensity of fluorescence
combined with a metachromatic shift of this
fluorochrome, revealed as so called “side population”,
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having much distinct fluorescence emission properties
compared to other bone marrow cells [5,8].

Oxvygen danger

One of the strong genotoxins is oxygen [12,13].
Oxidative DNA damage leads to oxidation of DNA
bases with predominance of guanine [formation of 8-
0x0-7,8-dihydro- 2'-deoxyguanosine (8-0x0-dG)], base
ring fragmentation, sugar modification, crosslinking of
DNA and protein as well as induction of DNA strand
breaks [14,15].The most deleterious effect of oxidative
DNA damage is formation of DNA double-strand
breaks (DSBs). These lesions can be repaired either by
recombinatorial repair or non-homologous DNA-end
joining (NHEJ). The template-assisted recombinatorial
repair is essentially error-free but can take place when
cells have already replicated their DNA which serves
as a template, i.e. in late-S and G, phase of the cell
cycle. DNA repair in cells lacking a template (G; and
early S phase) occurs by the NHEJ mechanism. The
latter however, is error-prone and may result in
deletion of some base pairs [16].When such change is
at the site of an oncogene or tumor suppressor gene it
may promote tumorigenesis [17]. It can also cause
translocations and telomere fusion [18]. When the
stem cells reside in the in the non-proliferating Gy
state the error-prone NHEJ is the only mechanism for
their DSBs repair.

Both, the exogenous oxygen as well as reactive oxygen
species (ROS), the by-products of aerobic respiration
within the cell, contribute to oxidative DNA damage
[19-20]. The primary ROS generated in mitochondria
can diffuse from these organelles and reach the nuclear
DNA inducing its damage, or can generate secondary
radicals with DNA damaging properties [21,22]. The
ongoing oxidative DNA damage by endogenous
oxidants induces consistent replication stress, which
when concurrent with activation of mTOR pathways, is
considered to be the primary cause of cell senescence
and organismal aging [23-28]. Clearly, the genome of
stem cells has to be maximally protected from
senescing- and aging- related changes. What
mechanisms operate to shield genomic DNA in stem
cells from the oxidative damage?

the

Reduced oxvgen level in the environment:

hypoxic niche

One of the factors reducing oxidative DNA damage in
stem cells is their location. Stem cells reside in their
respective niches [29], the distinct anatomical
compartments composed of cellular and intercellular
matrix constituents providing an optimal milieu for

maintenance and regulation of their biologic processes
[30]. The very characteristic feature of stem cell niche is
low concentration of oxygen [31,32]. While percentage
of oxygen in ambient air is about 21% [partial pressure,
oxygen tension p(O,) = 180 mm Hg], its percentage in
most organs and tissues is reduced to 2% - 9% (15 - 68
mm Hg) (33,34) and in the environment of stem cell
niche is between 1% and 6% (7.6 — 45 mm Hg) and the
intracellular p(O,) is 3 —4 mm Hg [35,36].

Interestingly, at the very low oxygen tension (1%) the
stem cells remain in the non-proliferating compartment
and maintain pluripotency while at the increased tension
(3% - 5%) they proliferate and start differentiation
[36,37]. The oxygen tension gradient within the stem
cell niche appears to provide signaling that mediates
transition of these cells from quiescence to proliferation
and trigger their differentiation [38-42]. At the same
time the very low oxygen tension milieu, where the
long-term self-renewal stem cells reside, offers the
conditions in which oxidative DNA damage induced by
exogenous oxygen is much reduced. Based on
differences in p(0,) such damage is expected to be
nearly 20-fold lower in the stem cell niche than in tissue
culture maintained at ambient air.

Containing danger of endogenous oxidants

Several mechanisms are being used by stem cells to
mitigate the hazards conveyed by the endogenous
reactive oxidants. First of all, for most of their life stem
cells remain in quiescent state having minimal
metabolic rate and thereby low level of ROS production
[43-47]. Their quiescent state is comparable to that of
the peripheral blood lymphocytes, whose metabolic rate
and generation of oxidants is nearly two orders of
magnitude lower that of their mitogenically stimulated
counterparts [48,49]. The metabolic rate of the most
primitive stem cells, the “very small embryonic-epiblast
stem cells”(VSELSs), as judged from extreme paucity of
their cytoplasmic content and few mitochondria, is
expected to be indeed minimal [50].

Further mechanism designed to maintain minimal
metabolic rate may involve asymmetric cell division. It
was recently shown that the most primitive, long-term
reconstituting, hematopoietic stem cells (Lin Sca'Kit';
LSK) which continuously reside in the LSK compart-
ment, during division segregate their mitochondria
unequally delegating more of these organelles to that of
the daughter cell which exits the LSK compartment and
enters differentiation pathway. The sister cell remaining
in the LSK compartment inherits the very low level of
energized mitochondria and thus remains with minimal
level of ROS production [51,52].
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Hyaluronan in stem cells biology

Hyaluronan (hyaluronic acid; HA), the ubiquitous
component of intercellular matrix, carries out numerous
functions that are essential for survival, differentiation,
proliferation, motility and intercellular communication
of variety of cell types. HA is also of crucial importance
for tissue and organ development and architecture
[reviews in 53]. Depending on its molecular weight HA
may exert diverse effects on normal and cancer cells
functions [53-57]. Extensive evidence points out that
HA plays critical role in many facets of stem cells
biology. Most of the evidence comes from the studies of
Susan Nilsson and her collaborators of the Peter
MacCallum Cancer Center, Melbourne, who explored
the interactions of this glycosaminoglycan with human
and murine hematopoietic stem cells [55-59]. These
authors demonstrated that HA is being synthesized by
HA-synthases located in the plasma membrane of stem
cells and is expressed on the surface of these cells
[44,56]. Three HA synthases, HAS-1, HAS-2 and HAS-
3, each synthesizing this biopolymer at different
molecular weight, are involved in its production in stem
cells. HA is also a predominant component of
intercellular matrix of the stem cell niche. It is unclear
to what extent stem cells themselves and the stromal
cells (fibroblasts) respectively contribute to its
accumulation in the niche [59,60].

The level of expression of HA on the cells surface
correlates with the differentiation status of the stem and
progenitor cells. The highest HA expression is observed
on the surface of the most primitive (Lin") stem cells,
and a progressive decline in its expression is seen to be
concurrent with differentiation. The mechanistic in vitro
studies indicate that HA functions in modulating cell
proclivity to differentiation and proliferation by
enforcing continuance of the dormant state of the most
primitive Lin™ cells [55-61]. This inhibitory effect of
HA is consistent with its suppressive effect on
mitogenic stimulation of lymphocytes which also
remain in the Gy dormant state when cultured with the
mitogen in the presence of high molecular weight HA
[62].

HA plays also essential role in homing and lodgment of
the transplanted stem cells. The transplanted
hematopoietic stem and progenitor cells preferentially
home to the trabecule-rich metaphysic of femur where
they become lodged in endosteal niche, being associated
with blood vessels. The presence of HA, which is
highly expressed in endothelium of blood vessels,
provides the homing and lodgment mechanism for the
stem cells having strong expression of the HA receptors
CD44 and RHAMM [57,63,64]. It appears that HA

synthase HAS-3 plays a major role in this mechanisms
because transplantation of stem cells to mice lacking
this synthase (Has—3'/ ") leads to aberrant distribution of
the grafted cells in bone marrow compared to the wild
type recipients [58]. Apparently the presence of active
HAS-1 and HAS-2 synthases is inadequate to assure
proper homing and lodging of hematopoietic stem cells
in Has-3"" mice. The presence of HA CD44 receptors on
surface of stem cells mediates their adhesion and rolling
movement on HA surfaces [65].

One of the mechanisms by which HA facilitates homing
and engraftment of transplanted hematopoietic stem
cells (as shown in the case of umbilical cord blood)
involves its effect in promoting synthesis of membrane
type 1 (MT1) of matrix metalloproteinase 2 (MMP-2)
[66]. Since MT1-MMP-2 plays an important role in
homing of hematopoietic progenitor stem cells it has
been proposed that the priming strategy that involves
pretreatment of cord blood progenitor/stem cells with
HA before transplantation could improve their homing
and engraftment [66].

Interestingly, HA can substitute hypoxia for the long-
term maintenance of embryonic stem cells in culture,
preserving their pluripotency and thereby providing a
useful alternative that enhances their viability [67]. A
combination of hypoxia and HA may be even more
beneficial in this application.

The importance and protective effect of HA on stem
cells are well recognized in the field of transplantation
of these cells in regenerative medicine. Variety of
hydrogel scaffolds providing a niche-like environment,
are being used as stem cell vehicles for their
transplantation [68-73]. HA, modified by different
approaches to allow structural encapsulation of
individual stem cells, is the key component of all these
hydrogel products. Stem or progenitor cells
encapsulated into such bio-artificial niches have been
found to be protected from cytotoxic agents such as
anticancer drugs used to treat the patient, and remain
competent in terms of their capability to lodge and
functionally replace native stem cells [69-73].

It should be noted that the HA receptor CD44 is
frequently used as a marker to identify and sort out drug-
resistant stem-like cells from different tumors [74-76].
Interactions between HA and cancer cells are the subject
of extensive literature [reviews in 77] but little is known
on the role of HA and HA-CD44 interactions in cancer
stem-like cells, particularly whether such interactions
may affect stability of these cells genome. However,
there are interesting observations from the studies of
cancer cells pertaining to interactions between CD44 and

www.impactaging.com

80

AGING, February 2012, Vol.4 No.2



HA vis-a-vis the efflux pump in these cells affecting
efficiency of the P-glycoprotein in removing anticancer
drugs of known genotoxicity [78-81]. It is possible that
the HA-CD44 interactions in cell membrane of stem cells
play a role in protecting their genome via modulation of
the efflux pump effectiveness.

Protection of DNA from oxidative damage by
hyaluronan

The increased production of ROS takes place during
inflammation and the oxidants generated in the
inflamed tissue mediate and further amplify many
inflammatory reactions [82-87]. It has been proposed
that one of HA biological functions is to provide
protection against cellular damage caused by radicals
generated by oxidative reductive systems or ionizing
radiation [88]. Indeed, HA has strong anti-inflammatory
properties and is clinically used to abrogate or attenuate
inflammation in many tissues and organs [89-100]. Its
clinical utility is of particular significance in treatment
of osteoarthritis [89,95-97,100]. The anti-inflammatory
capabilities of HA are mediated, at least in large part, by
its antioxidant activity [101-108]. Promotion of the
wound healing by HA may also be facilitated by similar
antioxidant mechanisms [109,110].

We have recently reported that DNA damage signaling
evoked by exposure of cells to exogenous oxidants such
as HyO, was markedly attenuated by HA; especially
effective was HA of high molecular weight [111]. In
another study, we observed that the extent of DNA
damage response induced during oxidative burst of
macrophages [112] was also distinctly reduced in the
presence of high molecular weight HA [113].
Moreover, the level of constitutive DNA damage
signaling revealed by activation of Ataxia
Telangiectasia Mutated (ATM) and phosphorylation of
histone H2AX on Ser139 and reporting persistent DNA
damage induced by endogenous oxidants, the by-
products of aerobic respiration in mitochondria
[114,115], was seen to be strongly attenuated by HA
[111]. Here again, the high molecular weight HA was
more effective than its low molecular weight form
[113].These findings underscore that HA exerts a
protective effect on cellular genome by neutralizing the
exogenous as well as endogenous oxidants.

Protection of DNA by HA through its antioxidant activity
has been also observed in fibroblast cultures in which
oxidative stress was induced by treatment with iron and
ascorbate [116]. In addition to protection of DNA
integrity (assessed by analysis of its fragmentation) HA
also reduced protein oxidation, lipid peroxidation and
formation of OH* radicals in these cultures [116].

Does hyaluronan also protect germ cells DNA?

Interestingly, HA has found wide utility in assessment
of integrity of sperm cells DNA. Specifically one of the
methods to separate fertile sperm cells that have
undamaged DNA is based on the ability of sperm cells
attach to HA [117-121]. The sperm cells that bind to
solid-state HA show chromatin structure with high
DNA chain integrity [116-120]. DNA integrity of HA-
bound sperm cells was comparable to that assessed by
the alternative methods of spermatozoa evaluation,
based on DNA susceptibility to denaturation [122] or
analysis of the presence of DNA strand breaks by the
TUNEL assay [123]. Sperm cells express HA-receptors
on the cell surface and it has been postulated that the
HA-binding receptors have a specific role in cell
maturation, motility and fertilization processes [124-
126]. Since the cells expressing HA-receptors can
internalize HA by endocytosis [127-129] it is possible
that HA is internalized into spermatozoa and its
presence within the cell can provide further DNA
protection from oxidative damage. Since in sperm cells
the ROS-generating organelles mitochondria are at
some distance from nuclear DNA the HA-protection
from exogenous rather than endogenous oxidants may
be of more significance.

Oocytes were shown also to synthesize and secrete HA
[130-133]. The concentration of HA in follicular fluid
was shown to a good indicator for estimation of oocyte
viability for fertilization [130]. The interactions
between HA and CD44 receptors on cumulus-oocyte
complexes were shown to be critical for oocyte
maturation [133,134].

Similar to stem cells there are several mechanisms
protecting DNA in germ cells, including the blood-testis
barrier and efflux pumps [135-137]. The possible role
of HA in terms of protection of germinal cells DNA
against oxidative damage has not been addressed in the
literature as yet. However, the collective evidence of
strong correlation between the expression of HA-
receptors versus genome integrity of sperm cells [119-
122] as well as versus viability and capability of
oocytes for fertilization [132], combined with the
findings that HA protects DNA from oxidative damage
in other cell types [111-113,116], provides a contention
that HA may play a role in protecting germ cells
genome from oxidative damage.

Mechanisms of cell protection from oxidative
damage by HA

As discussed, strong evidence points out that the
antioxidant properties of HA provide protection of
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genomic DNA against the damage by ROS as well as
are involved in attenuation of inflammatory processes.
Two different mechanisms may contribute to the
antioxidant properties of HA. One mechanism involves
the ability of HA to chelate Fe++ and Cu++ [138,139].
These ions are critical in Fenton's reaction, in which the
superoxide and hydrogen peroxide, which themselves
are not highly reactive with DNA, are converted into the
strongly reactive with DNA hydroxyl radical (OH¥*)
[140-142]. Interception of these ions by HA makes
them unavailable for Fenton’s reaction thereby reducing
generation of the OH* radical.

The second mechanism by which HA may attenuate
damage induced by oxidants involves the direct
scavenging of oxidant molecules, particularly the
reactive products of Fenton's reaction OH* radicals, by
HA [101,103,116]. Of note, HA from synovial fluid was
shown to have greater ROS-removing activity and
scavenged more diverse range of ROS compared to
other antioxidants such as catalase or superoxide
dismutase (SOD) [103].

The ROS scavenging by HA while it depletes the pool
of reactive oxidants potentially damaging DNA at the
same time results in a breakdown of HA molecules
[101,103,104]. The loss of HA viscosity, reporting HA
degradation, is observed in vitro upon HA exposure to
free radicals and in vivo, in the inflamed tissues [143]. It
was shown that exposure of synovial fibroblasts to H,O,
while leads to HA breakage it also enhances HA
synthesis [144]. Likely, this is a compensatory
mechanism to maintain high level of HA thereby
enhancing the antioxidant defense [145]. Because the
newly synthesized HA is of high molecular weight and
is replacing the degraded HA the capability of ROS
scavenging is being preserved and not decreased.

When DNA damage occurs the highly effective and as
much as possible error-free DNA repair is the
subsequent mechanism by which stem cells protect
genome integrity. Robustness of DNA repair in stem
cells, and in particular of embryonic stem cells, is
greater compared to other somatic cells [145-148]. For
example following DNA damage mouse embryonic
stem cells end up with 100 times fewer cells with
mutations compared to mouse adult somatic or
embryonic  fibroblasts [145]. One mechanisms
contributing to such an outcome is modulation of the
cell cycle checkpoints and DNA damage signaling
pathways to enhance efficiency of DNA repair. The
second mechanism relies on elimination of cells with
mutations by apoptosis. The checkpoint and DNA
damage signaling pathways as well as the pathways
regulating cell proclivity to undergo apoptosis are much

more effective in stem cells compared to other somatic
cells [145].

Possible pitfalls in interpretation of the data from in
vitro experiments

Most observations regarding modulation of cell growth
and proliferation of stem cells by HA came from the in
vitro experiments in which the cells were growing at
standard tissue culture conditions in an atmosphere of
air and CO,. As mentioned, the partial pressure of O,
(pO,) of 159 mm Hg (21%) in ambient air is much
higher than in tissues, especially in the
microenvironment of the stem cells niche [35,36].
Because cell growth, and in particular the induction of
proliferative senescence [149] as well as accumulation
of mutations [150], are much dependant on oxygen
concentration, the in vitro findings on cells growing
under standard atmosphere conditions may be hampered
by an experimental bias, i.e., the consequence of
exposure to non-physiological pOs.

Most of the in vitro studies were also carried on stem
cells growing attached to glass or plastic surfaces and
exposed to HA that was included in the culture media.
Such cells when attached to solid, dried out surfaces
treated with various chemicals have very different
migration properties, proliferation capability, and cell-
to-cell interactions compared to in vivo conditions. The
cells growing on solid surfaces exhibit also a very
different behavior than that of the same cells grown on
highly viscoelastic HA.

When cells from the lymphomyeloid system, tumor
cells, fibrocytes or stem cells are placed on highly
hydrated elastoviscous solutions of HA, they remain
round, divide and move toward each other and on top of
each other, forming a multilayered assembly. These
assemblies are separated from each other. Depending on
the cell lines, they survive or die slowly [53, 62, 103,
151,152]. This is the same highly purified hyaluronan
that today is used worldwide as a therapeutic device in
eye surgery, replacing the synovial fluid to control pain
and as tissue augmentation of connective tissues of the
skin and muscles.

Since in the vertebrate intercellular matrix, especially in
the connective tissues, the cells are surrounded by liquid
hyaluronan of various molecular weights and
concentrations, it is logical to argue that the cells must
have different behavior and activities — even gene
expression — when surrounded with hyaluronan and not
growing on plastic or glass surfaces. A caution,
therefore, should be exercised in interpolating the in
vitro results of cells growing on solid surfaces with the
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in vivo conditions when the cells are embedded and
exposed in a highly hydrated intercellular matrix. The
cell-to-cell interactions may have an entirely different
character.

Conclusions

The mechanisms associated with maintenance of
genome integrity of stem cells, particularly focused on
elucidation of the role of ROS and DNA damage
response, have been recently reviewed [153]. In this
review, while we briefly outline most mechanisms, the
emphasis is given to the role of HA, which was
neglected in prior literature. Although most reviewed
data comes from hematopoietic stem cells attempts have
been made to summarize the evidence on a role of HA
in other types of stem cells as well. Protection of
genome of the germ cells (spermatozoa and oocytes) is
even of more importance that of the stem cells. Since
there is a significant association between HA and
expression of HA receptors and genome integrity in
spermatozoa and oocytes we draw therefore attention to
the possible role of HA in protection of DNA integrity
in germ cells as well, which was also uncared for in
prior reviews.

As yet there is no direct experimental evidence that
unequivocally demonstrates that HA protects stem cells
from oxidative DNA damage. However, the wealth of
indirect evidence presented in this review strongly
advances the notion that one of the functions of HA
associated with stem cells is DNA protection against
oxidative damage. The most supporting evidence to this
conception provide the findings that DNA damage
response triggered by exogenous as well endogenous
oxidants in several cell types, most likely reporting
persistent oxidative damage, is strongly attenuated by
HA [111,113]. There is no rationale to expect that stem
cells would be an exception and that DNA protection by
this mechanism is not attainable in them. Since stem
cells reside in the HA-rich niche, synthesize HA,
express it on the surface and are able to internalize it
[55-59], clearly conditions exist that allow HA to
provide protection of DNA against oxidants.

Of interest and of further support for this notion are
observations that the level of expression of HA on
surface of stem cells correlates with their differentiation
status and the mechanistic studies showing that HA
modulates cell proclivity to differentiation and
proliferation [55-61]. On the other hand, there are
observations that oxygen tension gradient within the
stem cell niche appears to provide signaling that
mediates transition of these cells from quiescence to
proliferation and trigger their differentiation [38-

42,154-156). It is tempting therefore to speculate that
the oxygen tension gradient which mediates propensity
of stem cells to differentiate is actually being modulated
by the gradient of HA associated with stem cells. Thus,
HA could have diverse functions with respect to stem
cells. Specifically it can: (i) protect the most primitive
long-term self-renewal stem cells from reactive
oxidants; (ii) offer a gradient of accessibility of ROS
which trigger their differentiation. This is achieved by
different expression of HA-receptors and thus different
level of HA binding and possibly its internalization, (iii)
modulate motility of stem cells and progenitors
[65,70,157], and (iv) similar  to another
glycosaminoglycan, heparin sulfate [158,159], it may
modulate gradients and accessibility to growth factors,
and thus to control autocrine and paracrine signals for
stem cells [158].
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