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Abstract: Cell cycle arrest is not yet senescence. When the cell cycle is arrested, an inappropriate growth-promotion
converts an arrest into senescence (geroconversion). By inhibiting the growth-promoting mTOR pathway, rapamycin
decelerates geroconversion of the arrested cells. And as a striking example, while causing arrest, p53 may decelerate or
suppress geroconversion (in some conditions). Here | discuss the meaning of geroconversion and also the terms gerogenes,
gerossuppressors, gerosuppressants, gerogenic pathways, gero-promoters, hyperfunction and feedback resistance,
regenerative potential, hypertrophy and secondary atrophy, pro-gerogenic and gerogenic cells.

INTRODUCTION

A year ago, I wrote a perspective “Cell cycle arrest is
not senescence*, intended to clarify a new meaning of
cellular senescence [1]. The perspective was not
completely understood in part due to its title. The title
was missing the word “yet”, which is now included. As
discussed in the article, cell cycle arrest is not yet
senescence and senescence is not just arrest: senescence
can be driven by growth-promoting pathways such as
mTOR, when actual growth is impossible. (This
mechanism connects cellular senescence, organismal
aging and age-related diseases, predicting anti-aging
agents [2-6]). In brief, senescence can be caused by
growth stimulation, when the cell cycle is arrested [7,
8]. As one hallmark, senescent cells loose proliferative
potential (PP) - the potential to resume proliferation.
Importantly, inhibitors of mTOR suppress hallmarks of
senescence during cell cycle arrest so cells stay
quiescent but not senescent [9-13]. Such quiescent cells,
with inhibited mTOR, retain PP. Once again, cells may
be arrested but retain PP, the ability to restart
proliferation, when allowed. In certain conditions, p53
causes arrest but can preserve PP by inhibiting the
mTOR pathway [14-16]. However, this phenomenon
should not be misunderstood to indicate that “p53
induces proliferation or prevents arrest or keeps cells

proliferating” or “arrested cells retain proliferation”;
rather, p53 instead regulates proliferative potential.
Although we tried to explain what p53 does exactly
(causes arrest, while preserving PP) misunderstanding
nonetheless ensued. One solution is not to use the term
PP altogether, substituting for it the term RP
(regenerative potential). In the organism, stem cells and
wound-healing cells, while quiescent, are capable to
regenerate tissues after cell loss. Unlike non-senescent
cells, senescent cells cannot divide in response to cell
loss and therefore lose the potential to regenerate
tissues. In cell culture, quiescent cells preserve RP. If
the cell cycle is blocked, activation of mTOR causes
loss of RP [17]. New concepts need new terminology.
Instead of squeezing novel meaning into the old terms,
here we present new terms for a new meaning of the
aging process. And a central term is gerogenic
conversion or geroconversion.

Geroconversion

Mitogens and growth factors activate growth-promoting
pathways, which stimulate (a) growth in size and (b)
cell cycle progression. When cells proliferate, an
increase in cell mass is balanced by division.
Withdrawal of growth factors causes quiescence: the
quiescent cell neither grows, nor cycles, and its
functions and metabolism are low. In contrast, cell cycle
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blockage, in the presence of growth-stimulation leads to
senescence (Figure 1). Hallmarks of senescence include
a large flat morphology, senescence-associated beta-
galactosidase (SA-beta-gal) staining, cellular over-
activation and hyper-function, feedback signal
resistance and loss of RP (that is, the inability to restart
proliferation when the cell cycle inhibitor is removed).
For example, in one well-studied cellular model,
inducible ectopic expression of p21 causes cycle arrest
(day 1) and senescence (after 3 days) [18, 19]. At first,
the arrested cells are quiescent-like: they are not
hypertrophic, and they are SA-beta-gal negative and
retain RP. Thus, they can restart proliferation when p21
expression is switched off. After 3 days, however, the
cells acquire a senescent morphology and, if p21 is then
switched off, the cells cannot restart proliferation or die
in mitosis [19]. Importantly, while inhibiting the cell
cycle, p21 does not inhibit the mTOR pathway [8-17,
20, 21]. mTOR and perhaps some other growth-
promoting pathways convert quiescence (day 1) into
senescence (day 3). Inhibition of mTOR by rapamycin
decelerates this ‘geroconversion’ [8-17, 20, 21].

Growth
stimulation

mTO

T

Cycle arrest Cycle arrest

Figure 1. Quiescence versus senescence. Q: quiescent
cell. In the absence of the growth factors, normal cells
undergo cell cycle arrest. S: senescent cell. When cell cycle is
arrested, the growth signal (if it cannot reactivate cycling)
drives senescence.

Similarly other inhibitors of mTOR also suppress
geroconversion [10, 11]. For example, in some cell
lines, induction of p53 inhibits mTOR [22-26] and
other anabolic pathways [27-32], thus suppressing
geroconversion in cells arrested by ectopic p21 [14].
By itself, p53 causes cell cycle arrest but can suppress
geroconversion [14-17, 33-35]. In cell culture, cell cycle
arrest and geroconversion are initiated simultaneously.

In proliferating cultured cells (especially cancer cells)
mTOR is activated. Many agents cause cell cycle arrest
without inhibiting mTOR (or other growth factor-
sensing pathways). Once arrested, such cells are rapidly
converted to senescent cells. This is accelerated
geroconversion. So it may seem that senescence is
“caused” by cell cycle arrest. The above examples,
however, suggest that senescence is caused by growth-
stimulation when the cell cycle is arrested.

In the organism, most cells are arrested and
geroconversion can be slow. When chronically
stimulated (but still arrested) they can become
senescent. This physiological geroconversion can be
imitated in cell culture [17].

The terms gerogenic conversion and oncogenic
transformation sound alike.This is not a coincidence for
choosing the term geroconversion. Gerogenic
conversion and oncogenic transformation are two sides
of the same process.

Gerogenic oncogenes and gerogenes

Activation of growth factor receptors, Ras and Raf
family members and members of the MAPK and
PI3K/Akt pathways are universal in cancer [36-38]. All
these oncogenes activate the mTOR pathway [39-47].
They are gerogenic oncogenes, which drive the
geroconversion of arrested cells. Because strong
growth-promoting (mitogenic) signals induce cell cycle
arrest [48-54], strong mitogenic signaling causes both
conditions of senescence: arrest and mTOR/growth
signal (Figure 2A). To avoid senescence, cancer cells
must disable cell cycle control (Figure 2B) by either
loss of pl6, p53 and Rb or activation of c-myc, for
example [36-38, 48, 55, 56]. In proliferating cells,
gerogenic oncogenes render cells malignant and pro-
gerogenic (see below). The same gerogenic oncogenes
or their analogs accelerate aging and shorten life span in
diverse species from worm to mammals. Therefore,
these genes can be termed gerogenes [57]. Thus, the
mTOR pathway shortens life span, whereas rapamycin
extends life span [58-75]. Not coincidentally, Mutations
that increase the life span of C. elegans inhibit tumor
growth [76]. Finally, metabolic self-destruction, known
as chronological senescence in yeast [60, 61, 77] is also
stimulated by gerogenes and is inhibited by rapamycin
[78].

Gerosuppressors
Gerosuppressors are genes (and their products) that
suppress  geroconversion.  Gerosuppressors  (for

example, PTEN, AMPK, sirtuins, TSC2, NF-1 and p53)
antagonize the mTOR pathway (see for ref. [57]). Their
inactivation shortens life span in model organisms.
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Gerosuppressors are also tumor suppressors. So gero-
suppressors suppress both geroconversion and cancer.

Gerosuppressants

Gerosuppressants are small molecules (such as
rapamycin) that suppress geroconversion. Not co-
incidentally, rapamycin also extends life span in diverse
species from yeast to mammals. They can, in theory, be
used to treat age-related diseases by slowing down
aging, thus extending both maximal and healthy
lifespan.

Gero promoters

Small molecules or drugs that can accelerate or promote
geroconversion. One potential candidate is phorbol
esters, which can activate mTOR in some cells. Not
surprisingly, it is also a tumor-promoter.

Gerogenic pathways

Gerogenic signaling pathways promote geroconversion.
Whether gerogenic pathways cause or abrogate cell
cycle arrest is irrelevant. For example, strong
mitogenic/growth signals can induce cell cycle arrest,
instead of proliferation [48-54]. Simultaneously, in
arrested cells, growth signals cause geroconversion,
leading to senescence (Figure 2A). As another example,
the effects of p53 on cell cycle and geroconverion can
be dissociated [14].

Pro-gerogenic conversion

In proliferating cells, overactivation of the mTOR
pathway renders them pro-gerogenic. Cancer cells are
proliferating pro-gerogenic cells. When such cells are
forcefully arrested, they become senescent. Also,

A Growth
stimulation

mTO
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oncogenic

signal
(RAS, PI3K)

2

Cycle arrest

Figure 2. Strong oncogenic signaling,
mitogenic/oncogenic signal can simultaneously cause arrest and activate mTOR. Cells senesce.
(B) Disabling of cell cycle control (loss of p16, Rb, p53) can convert senescence to cancer.

senescence and cancer.

stimulation of mTOR in normal stem cells causes
hyper-proliferation, pro-gerogenic conversion and cell
exhaustion [79-84], contributing to aging.

Gerogenic cell

Although loss of RP is very useful marker of
senescence in cell culture, this marker may not play a
key role in age-related pathologies in the organism,
because most post-mitotic cells should not be able to
restart proliferation anyway. (Notable exceptions are
stem, wound-healing and satellite cells). I suggest that
active mTOR_in arrested cells is a crucial marker of
gerogenic cells and early senescence. Gerogenic
(senescent) and quiescent cells can be distinguished by
the levels of phosphorylated S6 (pS6), the ribosomal
protein that is phosphorylated in response to mTOR
activation: high in senescent cells and low in quiescent
cells. Levels of pS6 in senescent cells may remain
similar to the levels of pS6 in proliferating cells. So
senescent/gerogenic cells have many features of
proliferating cells. Interestingly, basal (fasting) levels
pS6 were elevated in old mice [85]. Gerogenic cells
could be defined as arrested cell with activated mTOR.
The most physiologically relevant features are
hypertrophy, hyperfunction and feedback resistance.

Hypertrophy

Growth signals during cell cycle arrest lead to an
enlarged cell morphology. From theoretical
perspective, hypertrophy will eventually be limited by
activation of  lysosomes/autophagy [7].  This
phenomenon may explain the activity of SA-beta-Gal,
which is lysosomal enzyme [86-88] and active
autophagy despite active mTOR [89, 90].
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Hyperfunction

Due to over-stimulation, senescent cells are
hyperfunctional. For example, For example, senescent
fibroblasts secrete many cytokines, growth factors and
proteases (the hypersecretory senescence-associated
secretory phenotype or SASP), senescent osteoclasts
resorb bones, smooth muscle cells contract, platelets
aggregate, neutrophils generate ROS, neurons charge,
endocrine cells produce hormones. Noteworthy, SASP
as a marker of senescence [91-99] is an example of
hyperfunction.

Feedback resistance

Overactivation of signaling pathways causes signal
resistance due to feedback inactivation of the signaling
pathway. As an example, mTOR/S6K overactivation
causes insulin and GF resistance [100-104].

Secondary atrophy

Hyperfunctions are associated with hypertrophy and
hyperplasia. Yet, at the end, cells may fail either to
function or to survive, leading to secondary atrophy.
When cells fail, conditions become TOR-independent
and terminal. This conceals hyperfunction as an initial
cause, misleadingly presenting aging as a decline.

From gerogenic cells to organismal aging

You might notice that an accumulation of molecular
damage was never mentioned in this article. It was
unneeded. Cellular aging and geroconversion is not
caused by accumulation of random molecular damage.
Although damage accumulates, I suggest that the
organism does not live long enough to suffer from this
accumulation with one special exception that
illuminates the rule [105]. (The weakness of free radical
damage theory was discussed in detail [106-114]).

One definition of organismal aging is an increase in the
probability of death. Gerogenic cells (due to their
hyper-activity and signal-resistance) may slowly cause
atherosclerosis, hypertension, insulin-resistance,
obesity, cancer, neurodegeneration, age-related macular
degeneration, prostate enlargement, menopause, hair
loss, osteoporosis, osteoarthritis, benign tumors and
skin alterations. These conditions lead to damage -- not
molecular damage but organ and system damage.
Examples include beta-cell failure [115], ovarian failure
(menopause) [116], myocardial infarction, stroke, renal
failure, broken hips, cancer metastases and so on [6,
117]. These are acute catastrophes, which cause death.
I suggest that by suppressing geroconversion,
gerosuppressants will prevent diseases and extend
healthy life span.
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