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Abstract: Calorie restriction (CR), which deactivates the nutrient-sensing mTOR pathway, slows down aging and prevents
age-related diseases such as type Il diabetes. Compared with CR, rapamycin more efficiently inhibits mTOR. Noteworthy,
severe CR and starvation cause a reversible condition known as “starvation diabetes.” As was already discussed, chronic
administration of rapamycin can cause a similar condition in some animal models. A recent paper published in Science
reported that chronic treatment with rapamycin causes a diabetes-like condition in mice by indirectly inhibiting mTOR
complex 2. Here | introduce the notion of benevolent diabetes and discuss whether starvation-like effects of chronic high
dose treatment with rapamycin are an obstacle for its use as an anti-aging drug.

Starvation diabetes-like condition with low mTOR
activity

If you read the Abstract, you might wonder whether
rapamycin extends lifespan despite or because of
“starvation-like diabetes”. As described by Lamming et
al [1, 2] extending several previous observations [3-6],
chronic administration of high doses of rapamycin
causes insulin resistance in mice. Yet, at similar doses,
rapamycin prolongs life span in mice [7, §8]. Moreover,
in several studies, rapamycin prevented complications
of diabetes such as nephropathy [9-14]. Also,
theoretical considerations indicate rapamycin for
retinopathy [15], which was recently confirmed in an
animal model [16]. Rapamycin prevents atherosclerosis
in rodents [17-20] and coronary re-stenosis in humans
[21, 22]. In contrast, diabetes promotes nephropathy,
retinopathy, atherosclerosis and coronary disease. How
could this be reconciled? mTOR is a part of a nutrient-
sensing pathway [23-27]. Nutrients and insulin activate
mTOR. Rapamycin, which inhibits mTOR, is a
“starvation-mimetic”, making the organism “think” that
food is in a short supply. The most starvation-sensitive
organ is the brain. The brain consumes only glucose and
ketones. Therefore, to feed the brain during starvation,
the liver produces glucose from amino acids (gluconeo-

genesis) and ketones from fatty acids (ketogenesis).
Since insulin blocks both processes, the liver needs to
become resistant to insulin. Also secretion of insulin by
beta-cells is decreased. And adipocytes release fatty
acids (lipolysis) to fuel ketogenesis by the liver. Thus,
there are five noticeable metabolic alterations of
starvation:  gluconeogenesis, ketogenesis, insulin
resistance, low insulin levels and increased lipolysis.
This metabolic switch is known as starvation diabetes, a
reversible condition, described 160 years ago (see for
references [28]). Starvation diabetes could be explained
by deactivation of mTOR, which otherwise is activated
by nutrients. In theory, rapamycin can cause similar
symptoms in the presence of nutrients.

Type II diabetes: insulin-resistance due to active
mTOR

Starvation-diabetes is not a true type II diabetes. Type 11
diabetes is a consequence of insulin-resistance in part
due to excessive nutrients and obesity. Even brief
overfeeding may induce insulin resistance [29].
Nutrients and insulin activate mTOR. In turn, over-
activated mTOR causes insulin resistance [30-42]. This
feedback loop is shown in figure 1A. mTOR activates
S6 kinase (S6K), which causes degradation of insulin-
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receptor substrates (IRS), thus impairing insulin
signaling. Also, mTOR causes insulin resistance by an
additional feedback mechanism [43, 44].

In high fat-fed obese rats, the mTOR pathway is
activated in the liver and muscle, leading to insulin
resistance [35]. In mice, sustained activation (by high
fat feeding) of mTOR is associated with hepatic insulin
resistance [45]. Chronic increase of insulin levels
(hyperinsulinemia) causes insulin resistance,
preventable by rapamycin [46]. In some animal models,
removal of visceral fat prevents insulin resistance [47-
49]. In humans, infusion of amino acids activate
mTOR/S6K1, causing insulin resistance [38, 40]. In
healthy men, rapamycin prevented activation of mTOR
and insulin resistance caused by amino acid mixture
[50]. Insulin stimulates glucose uptake and also
activates mTOR. By a feedback loop, mTORCI1
promotes insulin-resistance, decreasing glucose uptake
by the cell. And most detrimentally, mTOR is involved
in diabetic complications and age-related diseases [24-
27,51, 52-54].

The two opposite conditions?

Type II diabetes and starvation diabetes seem to be the
two opposite conditions: the first is associated with
activation of nutrient-sensing pathways, whereas the
second is associated with deactivation of nutrient
sensing pathways such as mTOR. Type II diabetes is
dangerous by its complications such as retinopathy,
neuropathy and accelerated atherosclerosis and cancer.
Long-term effects of prolonged “starvation diabetes” is
not known of course: it could not last for a long time,
otherwise an animal (or human) would die from
starvation. Or would not? An outstanding study by
Fontana et al provides some answers [55]. Among
individuals who had been practicing sever CR for an
average of 7 years, 40% of CR individuals exhibited
“diabetic-like” glucose intolerance, despite low levels
of fasting glucose, insulin and inflammatory cytokines
as well as excellent other metabolic profiles. In
comparison with the rest CR individuals, they had lower
BMI, leptin, circulating IGF-I, testosterone, and high
levels of adiponectin, which are key adoptations to CR
in rodents, suggesting severe CR [55]. The authors
speculated that the “insulin resistance” in this severe CR
group might have the effect of slowing aging, also
based on the finding that a number of insulin-resistant
strains of mice are long-lived [55]. The same
conclusion could be reached from the mTOR
perspective (Appendix 1).

“The paradox of the insu-lin/IGF-1 signaling pathway

in longevity” was first discussed by Nir Barzilai and co-
workers, who precisely noticed that insulin-resistance,
which is so detrimental in obese and aging mammals,
can be associated with genetic manipulations that
extend life span in model organisms [56]. Later Barzilai
et al suggested that insulin-resistance might serve as an
adaptive mechanism in some tissues by preventing
excess uptake of nutrients by cells [57]. This very
interesting idea implies that insulin resistance 1is
partially beneficial and partially hazardous in the same
condition such as type II diabetes. But still insulin
resistance in type II diabetes is overall harmful (leading
to retinopathy and other complications), whereas insulin
resistance during severe CR is benevolent. These are
clearly different conditions. In fact, they are the
opposite conditions. So insulin resistance may be
harmful or beneficial depending on the underlying
condition.

The model of TOR-driven hyper-functional aging
almost automatically solves paradoxes of aging,
including the insulin paradox (see paradox 7 and figure
4 in “Paradoxes of aging” [58]). From the TOR
perspective, insulin resistance is beneficial or harmful
when it is associated with ether low or high TOR
activity, respectively (Appendix, Fig. 1 and 3). And
this should not be surprising. Consider insulin resistance
as a symptom. The assessment of symptoms depends on
the underlying cause. For example, weight loss due to
calorie restriction is good, whereas weight loss in
terminal cancer is bad. Positive Tuberculosis Skin
(PPD) Test due to vaccination indicates protection from
tuberculosis, whereas positive test due to tuberculosis is
a symptom of tuberculosis. Similarly, hyperlipidemia in
obesity is bad, whereas hyperlipidemia due to
rapamycin-induced lipolysis is good (see figure 2 in
reference [53]). The list of examples is endless.
Similarly, insulin resistance, associated with TOR
overactivation, is bad (Fig. 1 B-C). But either insulin
sensitivity (Fig. 2) or insulin resistance (Fig. 3),
associated with inactive TOR, is good.

Type zero or benevolent diabetes

There are two types of diabetes, which at advanced
stages may become similar. Insulin resistance may
develop in type I diabetes (due to high glucose),
whereas insulin insufficiency in type II diabetes (due to
loss of beta-cells). Both types of diabetes lead to
complications. In comparison, starvation diabetes [28]
is only superficially resembles either type of diabetes.
Also, diabetes-like symptoms may occur in rapamycin-
treated mice and animals with genetically inhibited
insulin/IGFT signaling (Fig. 3). To encompass all these
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cases, | suggest the term type 0 (zero) or benevolent
diabetes. It is possible that some patients with diabetes
have inactivating mutations in the insulin/IGFI pathway
and thus “suffer” from benevolent diabetes.
Furthermore, the condition can be imitated by chronic
administration of rapamycin at least in some strains of
mice. Both calorie restriction and rapamycin extend life
span in mice. Rapamycin prevents retinopathy and
nephropathy. Also CR prevents type II diabetes and
other diseases [59], [60], [61], [62]. One can suggest
that type 0 diabetes should prevent type 2 diabetes.
Should type 0 diabetes be treated? Perhaps CR-
associated type O diabetes should not. What about
rapamycin-associated diabetes? Definitely, it should not
be treated with insulin. It was discussed that in theory
the most rational combinations with rapamycin are mild
calorie and fat restriction, physical exercise and
metformin [52]. Metformin may in theory counteract
rapamycin-induced gluconeogenesis in the liver. And
this rational drug combination may be also considered
as treatment of type 0 diabetes.

Inconsistencies in the literature on rapamycin-
induced insulin resistance

As demonstrated by Lamming et al, chronic
administration of rapamycin caused insulin-resistance
due to deactivation of mTORC2 and Akt [1]. This is
consistent with previous data that IRS signaling and
AKT activation was impaired in patients treated with
rapamycin [63]. However, there are some inconsis-
tencies. In another clinical study, rapamycin therapy in
contrast caused activation of Akt [64]. Second, whereas
Lamming et al found that rapamycin increased insulin
levels after feeding [1], other studies reported that
rapamycin in contrast inhibited insulin secretion [3], 4,
65]. Furthermore, inhibition of beta-cell adaptation and
insulin production by rapamycin was considered as the
main mechanism of rapamycin-induced diabetes in mice
[6, 66-69]. On the other hand, selective inactivation of
mTORC?2 in the liver can cause hyperinsulinemia [70].

Finally, diabetic-like symptoms were not observed in
numerous studies in mice. And rapamycin-induced
diabetes is rare in human patients, even though most of
them are prone to diabetes for other reasons.

Diabetes in patients receiving rapamycin

In renal transplant patients, who are prone to diabetes
(due to several reasons), chronic administration of
rapamycin modestly increases incidence of diabetes [71,
72]. Although the increase is statistically significant, it
took many years to detect it. For many years it was

thought that, unlike other agents used in these patients,
rapamycin either do not increase the incidence of
diabetes or increases it in combinations with tacrolimus
[73-79]. In the study involving 20124 recipients of
kidney transplant sirolimus (rapamycin)  was
independently associated with new onset diabetes [72].
And although it statistically significantly increases the
incidence of diabetes in renal transplant patient, we do
not know whether this is true diabetes, which is
dangerous by its complications, or starvation-like
diabetes, that prevents the complications of true
diabetes . Will chronic high doses of rapamycin cause
or prevent diabetes in humans without organ
transplantation? More investigations are needed.

Intermittent administration of rapamycin

Is glucose intolerance a part of therapeutic effects of
starvation-like drugs such as rapamycin? And may such
condition be not only benign but also prevent true
diabetes and its complications?  Although these
questions are very intriguing, the answers are not
immediately crucial. Simply, the most rational anti-
aging schedule is an intermittent (rather than chronic)
administration of rapamycin [53, 80]. First, this will
eliminate potential side effects. Second, intermittent
administration of rapamycin may in theory rejuvenate
stem and wound-healing cells and (in contrast to
chronic treatment) improve wound healing [80]. And
intermittent administration of rapamycin extended life
span in mice [81-86]. Also, brief treatment with
rapamycin does not affect mTORC2 [87].

Rapalogs (rapamycin and its analogs such evirolimus
and temsirolimus) inhibit only one target (mTORC1).
That was considered as a disadvantage of rapalogs for
cancer therapy. Inhibitors of both mTORCI1 and
mTORC2 are under development [88, 89]. But if
inhibition of mTORC?2 is not needed for the longevity
effect, then mTORCI1 selectivity is an advantage for
anti-aging therapy. Rapalogs (rapamycin and its
analogs) are selective inhibitors of TORCI1 and
inhibitors of mMTORCI1 will have the same side effects
as rapalogs. Yet, these (non-rapalog) inhibitors of the
TOR kinase also have off-target effects and side effects.
Therefore, rapamycin will remain the least toxic anti-
aging drug in the near future [90].
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Appendix 1: Paradoxes of diabetes

Previously I discussed that the mTOR-centered model
can solve so called insulin paradox [58], which was
exploited by Tom Kirkwood to undermine the notion
that aging is genetically regulated: “it seems
paradoxical that reduced insulin/ IGF-1 signaling
extends life span but insulin resistance leads to type II
diabetes. The real paradox is why, in mammals, low
insulin levels are associated with good health, but low
insulin responsiveness with bad health” [91]. In other
words, (a) low insulin signaling are associated with
good health and longevity and (b) insulin resistance is
associated with poor health. In both cases (A and B), the
insulin signaling is decreased. So why? From the
mTOR point of view, the cases are opposites. In case A
(Fig. 2), low insulin signaling is insufficient to activate
mTOR (and this is good). In case B (Fig. 1 B-C), insulin
signaling is low because of the active mTOR (this is
bad), which blocks insulin signaling. In case B, active
mTOR is a cause of insulin resistance and low insulin

signaling (Fig. 1 B-C). In case A, low insulin signaling
keeps mTOR inactive (Fig. 2).

Noteworthy, dwarf (GH-/-) (Fig. 2) and Klotho (Fig. 3)
mice have an extended longevity. But Klotho induces
IGF-1 and insulin resistance, whereas dwarf mice with
reduced IGF-1 and insulin levels have enhanced insulin
sensitivity. Bartke et al suggested that signaling
downstream from IGF-1 and insulin receptors is
reduced in both Klotho and dwarf mice [92, 93]. This is
in agreement with the mTOR-centric model [58], given
that the mTOR pathway is downstream from
insulin/IGF receptors.

The same mTOR-centered point of view is applicable to
the diabetes paradox. When diabetes is caused by high
mTOR activity, then it is associated with complications,
diseases and shortened life span (Fig. 1). This is type 2
diabetes. But when diabetic-like condition is caused by
either starvation or rapamycin, then it might be
benevolent (Fig. 3).

A: the norm B-C: type 2 diabetes
) Glucose Insulin Glucose fnsulin
Insulin ObeSi.ty Obesity
:‘*'1 Cytokines Cytokines
Glucose : \
TOR/S6K
The norm Insulin resistance/

Figure 1. The norm and type 2 diabetes (simplified schema).
(A) The norm. Insulin and nutrients such as glucose stimulate mTOR, which blocks insulin signaling

(feedback loop).

(B-C) High mTOR/S6K activity: insulin resistance plus decreased lifespan. (B) Overactivated by
nutrients, cytokins, insulin and other hormones, mTOR blocks insulin signaling causing insulin
resistance. Nutrients overstimulate beta-cells and insulin is increased. (C) In type Il diabetes, beta-
cells eventually fail and levels of insulin may be decreased.
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A: CR B: S6K1-/- C: GH-/- D: Rapa (some cases)

Insulin Insulin Insulin Insulin
Gl Glucose l Glucose | Glucose l
ucose \ \ \
' TOR/S6K TOR TOR/S6K Rapa
TOR/S6K

Insulin sensitivity/  Increased health and life span

Figure 2. Low mTOR/S6K activity: insulin sensitivity plus longevity.

(A) Calorie restriction. Deactivation of the nutrient-sensing mTOR pathway results in insulin sensitivity.
(B) Knockout of S6K1 in mice abolishes feedback block of insulin signaling, resulting in insulin sensitivity
[94].

(C) Decreased levels of growth hormone (GH). In mice, absence of GH or GH receptor leads to a
remarkable extension of longevity [95]. GH receptor deficiency is associated with a reduction in pro-
aging signaling, cancer, and diabetes in humans [96]. Growth hormone signaling accelerates aging in
mammals [97]. Remarkably, growth stimulation promotes cellular aging, when cells cannot proliferate
[98, 99]. Thus, the growth promoting pathways such as mTOR are involved in both organismal and
cellular aging.

(D) Acute treatment with rapamycin. Deactivation of the nutrient-sensing mTOR pathway abolishes a
feedback block of insulin signaling, resulting in insulin sensitivity [50].

A: severe CR B: IRS1-/- C: Klotho D: Rapa (some cases)
Insulin Insulin Insulin .
Insulin/insulin
Glucose l |-— Glucose\ [ I-_ Glucose\-\ l Glucose l l—
TOR/S6K TOR/S6K TOR/S6K P
TOR/S6K

(VN CES S QYA Increased health and life span

Figure 3. Low TOR/S6K activity: insulin resistance plus longevity (type 0 diabetes).

(A) Severe CR and starvation. Insulin resistance and symptoms of diabetes are observed during
starvation [28] and prolong severe CR [55]. Furthermore, CR may reduce rather than enhance insulin
effects in the insulin-sensitive dwarf mice [100].

(B) IRS1 knockout. Insulin receptor substrate 1 null mice live longer despite insulin resistance [101].

(C) Klotho mice. Overexpression of Klotho in mice extends life span. Klotho protein represses
intracellular signals of insulin and insulin-like growth factor 1 (IGF1), [102]. Also, Klotho interferes with
insulin/IGF-like signaling to improve longevity in Caenorhabditis elegans [103].

(D) Chronic treatment with high doses of rapamycin causes insulin resistance and glucose intolerance.
This condition can be associated with normal/increased and decreased levels of insulin. Noteworthy,
rapamycin induces Klotho [64].
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