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Caloric restriction: is mammalian life extension linked to p53?
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Abstract: Caloric restriction, that is limiting food intake, is recognized in mammals as the best characterized and most
reproducible strategy for extending lifespan, retarding physiological aging and delaying the onset of age-associated diseases.
The aim of this mini review is to argue that p53 is the connection in the abilities of both the Sirt-1 pathway and the TOR
pathway to impact on longevity of cells and organisms. This novel, lifespan regulating function of p53 may be evolutionarily
more ancient than its relatively recent role in apoptosis and tumour suppression, and is likely to provide many new insights
into lifespan modulation.

INTRODUCTION than would be predicted by their metabolic rates. This is
because, at a given metabolic rate, mitochondria from
Caloric restriction (CR), that is limiting food intake, is these species tend to produce fewer ROS. Thus the
recognized in mammals as the best characterized and accumulation of molecular damage and the resulting
most reproducible strategy for extending lifespan, increase of oxidative stress caused by ROS was thought
retarding physiological aging and delaying the onset of to contribute to aging rather than metabolic rate itself
age-associated diseases [1]. Restricted calorie intake and provided the strongest correlation with overall
modifies the rate of aging and cellular pathology, longevity [3]. More recently, however, became evident
reduces the age-associated accumulation of oxidatively that the ROS model cannot be the only driving-force of
damaged proteins, lipids and DNA and also prevents aging. No animal lives long enough to experience the
many of the changes in gene expression and consequences of damage by ROS, since other factors
transcriptional activity that normally occur with ageing terminate its life first [4]. Further, the overexpression of
[1]. Although several theories have been advanced over major antioxidant enzymes, which decrease free
the years to explain the anti-ageing effects of CR, one radicals, does not extend the lifespan of mice [5], and
favoured hypothesis is that CR acts by decreasing superoxide dismutases, the major reactive oxygen
oxidative stress [2]. Biologically, different animal species regulating autophagy [6], protect against
species are characterised by markedly different lifespan. oxidative stress but have little or no effect on life span
For example, mice have relatively short (around 2-year) in C. Elegans [7].
mean longevity, whereas humans live to a mean of 70-
80 years. Animals with higher metabolic rates often Thus despite impressive progress in identifying the key
have shorter life spans. The higher the metabolic rate of components of the CR pathway, many proximal
an organism, the greater the production of reactive effectors of CR induced longevity remain unknown to
oxygen species (ROS) and hence the shorter the life date. This can be related to the fact that CR causes a
span; however, in some species the strict correlation myriad of transcriptional and physiological changes that
between metabolic rate and life span is not maintained. are related to its positive effects on lifespan [8-12]. Are
Birds and primates, for example, tend to live longer these benefits due to passive effects of lowered caloric
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intake or is it the result of a highly evolved and
regulated process?

The aim of this short review is to argue that CR is
indeed a regulated process and that its main regulator
pathways, mTOR and Sirt-1, are connected to the p53
pathway.

The mTOR/Sirt-1 pathway

The CR-driven reduction of metabolic rate involves
downregulation of the nutrient sensor mammalian target
of rapamycin (mTOR), the evolutionarily conserved
serine/threonine protein kinase that is strongly involved
in most cellular functions and implicated in stimulating
cell growth [13-21]. The IGF-1-AKT-TOR network is
an evolutionarily conserved pathway that transmits
survival signals in cells in response to growth factor
stimulation. mTOR is able to regulate both apoptosis
and autophagy, and therefore affects the fate of cells.
Indeed, apoptosis is clearly implicated in cancer [22-55]
as well as in neurodegeneration [56-63]. The binding of
a growth factor (IGF-1) to its tyrosine kinase receptor
(IGF-1R) results in the recruitment and activation of PI3
kinase to the plasma membrane receptor, which in turn
phosphorylates the inositides, increasing the local
concentration of PIP3 and PIP2 at the plasma
membrane. This increase in lipid second messengers
recruits and activates the PDK and AKT protein kinases
at the plasma membrane where AKT is then fully
activated by phosphorylation of ser-473 and thr-308
[64-71]. AKT has several substrates that are
antiapoptotic such as FOXO, BAD [72-73] and MDM?2
[74]. In addition the activated AKT protein moves to the
cell nucleus where it phosphorylates the forkhead
transcription factors. These events result in a program
leading to antiapoptotic signalling, preparation for entry
into the cell cycle and cell growth, and communication
with the TOR kinase pathway, which senses nutrient
levels (glucose and amino acids) in the environment.
This is accomplished by AKT-1 phosphorylation and
inactivation of TSC2 [75-78], which forms a TSCI1-
TSC2 protein complex that is a GAP for the RHEB G-
protein. RHEB, in turn, activates the TOR kinase [79-
81]. Thus, an active AKT-1 activates the TOR kinase,
both of which are positive signals for cell growth (an
increase in cell mass) and division. Furthermore, CR,
which reduces the levels of insulin and IGF-1 in serum,
has been shown to extend life span and delay the onset
of age-associated pathologies through inhibition of TOR
[82-85].

The absence of glucose in the cell also increases the
levels of AMP, a coactivator of AMPK. Active AMPK
positively regulates the activity of the TSC1-TSC2

complex by phosphorylating the TSC2 protein
(resulting in the opposite activity to the AKT-1
phosphorylation of TSC2), which then turns off the
RHEB G-protein and reduces TOR activity [86].

The TOR kinase regulates two processes that can
account for the observed effect of dietary restriction on
longevity: translation of selected mRNAs in the cell and
autophagy. The first is the rate of protein synthesis,
which is modulated by the effect of TOR on the
ribosomal protein S6 kinase (S6K) and on the
translation initiation factor 4E-binding protein (4E-BP)
[87]. It is therefore possible that inhibition of TOR just
leads to reduction in the rate of protein synthesis and
this is the mechanism of its lifespan prolonging activity.
Inhibition of translation may shift cell metabolism to a
physiological state that favours maintenance and repair
and this may lead to extension of lifespan. Regulation of
autophagy is another process by which TOR may affect
cell longevity [88]. Accumulating evidence
demonstrates that longevity pathways interact with the
autophagic process to regulate diverse cellular functions
including growth, differentiation, response to nutrient
deprivation and oxidative stress, cell death, as well as
macromolecule and organelle turnover. This entails the
formation of double-membrane vesicles in the cell
cytoplasm that engulf cytoplasmic components,
including defective mitochondria, and move them to the
lysosomal compartment where they are degraded.
Autophagy can be induced by stress and also by caloric
restriction. The mechanisms by which enhanced
autophagy can improve organismal health and longevity
are largely elusive. As one possibility, increased
autophagy might improve cellular resistance to stress by
augmenting the metabolic buffering capacity of cells.
Alternatively, autophagy might enhance organellar
turnover and mediate a “cleaning effect”, thereby
preventing the accumulation of damaged/old organelles
[89-105]. But only physiological levels of autophagy
can promote survival under stressful conditions.
Reduced autophagy may be an oncogenic event and
contribute to tumour progression, while enhanced
autophagy is activated in tumour cells in which the
availability of oxygen and nutrients is poor and
represents an adaptive survival mechanism to overcome
drug-induced cellular stress and cytotoxicity [106-116].

Thus autophagy is negatively regulated by mTOR,
whose activity can be inhibited by rapamycin and
caloric restriction [117-124]. Thus, it has been shown
that CR slows down aging through inhibition of TOR.
On the other hand, it has also been demonstrated that
CR activates NAD(+)-dependent deacetylases, called
sirtuins, known to be involved in aging and age-related
diseases, thus extending lifespan [125-127] (Figure 1).
The Sirt-2 gene was shown to regulate life span in
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yeast; increased dosage extended life span, and loss of
function shortened it [128]. A similar relationship exists
between the Sirt-2 gene in C. elegans and life span
[129]. Because of the enormous evolutionary
divergence between yeast and C. elegans, it is likely
that Sirt-2-related genes determine the life span in a
broad spectrum of organisms, including mammals.
Caloric  restriction/nutrient  deprivation  stimulates
autophagy through the activation of the mammalian
Sirt-1 gene [130-135]. Indeed, Sirt-1 functions as a
metabolic sensor that detects the increase in NAD+
concentrations resulting from enhanced NADH
oxidation. Once activated, Sirt-1, which is an NAD-
dependent HDAC, can deacetylate essential autophagic
modulators and may affect cellular pathways involved
in glucose homeostasis.

CALORIC RESTRICTION

—T

Reduced levels of Absence of Enhanbed NAD*

Insulin and IGF-1 Glucose concentration
AKT AMPK Sirt-1

(o]

Autophagy

LONGEVITY
Figure 1. The regulation of longevity by caloric restriction.

But which pathway is indispensable for prolonged
lifespan by CR, inhibiting TOR or activating sirtuins?
Evidence has emerged that sirtuins and mTOR are
involved in the same longevity pathway [136].
Importantly, resveratrol, an activator of sirtuins,
antagonizes the mTOR/S6K pathway [137]. Therefore,
the two notions that CR prolongs lifespan either by
activating sirtuins or by deactivating TOR are, in fact,
complementary: CR deactivates the mTOR pathway in
part by activating Sirt-1.

The connection with p53
The p53 protein and its encoding gene were first

identified in 1979 because of its association with cancer
[138-141] and its function as a tumour suppressor gene

[142-168]. In response to various stress signals, p53
selectively regulates a set of its target genes and
initiates various stress responses, including cell cycle
arrest, apoptosis, and/or senescence, to exert its function
in DNA damage and tumour suppression. In addition,
p53 may play a dual role in autophagy regulation. On
the one hand, nuclear p53 can induce autophagy
promoting the transcription of proapoptotic and cell
cycle-arresting genes. In contrast, cytoplasmic p53
degradation exerts an autophagy-inhibitory function
[169]. Loss of p53 thus provides two levels of growth
advantage to tumour cells; it removes two mechanisms
of eliminating the cell in response to genotoxic stress,
and at the same time, enables cell survival under
limiting nutrient conditions. Paradoxically, each of
these exploits the same process, autophagy, utilizing its
opposing functions.

The existence of p53 in short lived organisms that do
not develop adult cancers, such as flies and worms,
suggests that tumour suppression is not the only or,
indeed, the original function of p53. Indeed, recent
studies have shown that p53 and its family members,
including p63 and p73, all play important roles in
reproduction [170,171]. Emerging evidence has
suggested that p53 is also an important but complex
player in the regulation of aging and longevity in
worms, flies, mice, and humans. The impact of p53 on
aging and longevity in humans has been recently
indicated by several epidemiological studies [172,173].
Moreover longevity is always coupled with the age of
attaining reproductive maturity in animals. The later in
life that reproductive maturity occurs, the greater the
longevity of that animal. Animals will most often not
reproduce in times of stress and starvation of nutrients
and will shut down their reproductive processes. Indeed,
p53 in adult worms and flies is predominantly localized
in the germline where it is employed in the prevention
of reproduction in response to stress signals such as
DNA damage and starvation. Thus p53 has its origins,
in an evolutionary sense, as a germline surveillance
molecule under conditions of starvation or DNA
damage [171]. It is only in vertebrates, where the body
plan requires self-renewal of tissues (flies and worms
are largely post-mitotic as adults, except for the
germline), where the p53 protein is found in somatic
tissues and takes on the function of a tumour
suppressor.

p53 interacts with IGF-1, TOR and Sirt-1 pathways, the
critical pathways that regulate aging and longevity
[174,175] (Figure 2). There are two major connections
between the proteins of these three pathways that form a
rapid and a slower response to stress signals after
activation of p53. First, the rapid signal transduction
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pathway responds to DNA damage by the activation of
p53 and AMPK, which in turn activates TSC2 via
phosphorylation [176,177]. This inactivates RHEB and
then mTOR and shuts down translation while turning on
autophagy. These events are p53 dependent in a cell, as
well as TSCI-TSC2 dependent after DNA damage, as
demonstrated by using cells that had no p53, TSCI1, or
TSC2 genes (from knockout mice). A different stress
signal such as glucose starvation rapidly activates this
pathway involving p53 and AMPK. AMPK can induce
p53 by promoting phosphorylation on serine-15, a site
known to be important for the activation of p53 [176].
There is a second wave of communication between p53
and the IGF-1-AKT and TOR pathways. Thus, Mak et
al. [178] first demonstrated that PTEN was induced by

P53,

-—— TSCl TSCZ - = AKT

the activation of p53. Cell lines or mouse tissues that
transcriptionally activated the PTEN gene after DNA
damage also induced TSC2 gene transcription. The p53-
mediated induction of PTEN and TSC2 acts in the same
way as the faster p53—-AMPK pathway. Increasing
PTEN levels shuts down AKT activity and relieves its
inhibition on TSC2, resulting in the inactivation of
TOR, loss of phosphorylation of S6 kinase, and
activation of autophagy [176,179]. Similarly, the
activation of AKT-1 and mTOR by the presence of
nutrients and growth factors leads to the AKT-1-
dependent activation of MDM?2 by phosphorylation,
which enhances its activity as a ubiquitin ligase and
moves it into the nucleus so that it more effectively
degrades and inactivates p53 [180].
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Figure 2. Linking caloric restriction (CR), sirtuins, and mTOR to the p53 pathway. CR and
resveratrol activate autophagy through sirtuins, thus extending lifespan. The intracellular
mTOR pathway via inputs of PI-3K, AMPK and other sensors integrates nutrient availability
and drives cell growth and aging. Rapamycin and resveratrol inhibit the Sirtuin/mTOR
network. CR and p53 may also inhibit mTOR activity through upregulation of known
negative regulators PTEN, TSC2 and AMPK. The products of two p53 target genes, Sestrin 1
and 2 activate AMPK, which phosphorylates TSC2 and stimulates its GAP activity enabling
mTOR inhibition. Glucose starvation inhibits mTOR by promoting TSC1/2 activation.
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Conclusion

Here, we have reviewed the role of caloric restriction in
longevity and argued that p53 is the connection in the
abilities of both the Sirt-1 pathway and the TOR
pathway to impact on longevity of cells and organisms.
Furthermore the integration of the p53 pathway with the
IGF-1 and TOR pathways brings together a number of
overlapping concepts that play a central role in life
processes. Through the transcriptional regulation of
different target genes (PTEN, AMPK, Sestrin 1/2,
TSC2) p53 negatively regulates the insulin/IGF-1 and
TOR signaling, creating an interpathway network that
permits cells to inhibit cell growth and division to avoid
the introduction of errors during these processes under
stress conditions (Figure 3). In this way, p53 increases
the fidelity of these processes over the lifetime of an
organism. Since decreased TOR/insulin/IGF-1 signaling
extends life span, p53 may regulate aging and longevity
through its down-regulation of the signaling of these
two critical pathways.

PTEN
, _7| Sestrin 1/2 Regulation of
p53 [ Aging and
; AMPK Longevity
TsC2

Figure 3. The new and complex role of p53 in regulating aging
and longevity through the transcriptional regulation of
different target genes.

This novel, lifespan regulating function of p53 may be
evolutionarily more ancient than its relatively recent
role in apoptosis and tumour suppression, and is likely
to provide many new insights into lifespan modulation.
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