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Abstract: Small increases in the expression of wild-type prelamin A are sufficient to recapitulate the reduced cell proliferation
and altered nuclear membrane morphology observed in cells expressing progerin, the mutant lamin A associated with
progeria. We hypothesized that the manifestation of these phenotypes in cells expressing elevated levels of wild-type
prelamin A or progerin is caused by the same molecular effectors, which play a central role in the onset of the progeroid
phenotype. To experimentally test this hypothesis, we compared the transcriptomes of isogenic diploid fibroblasts expressing
progerin or elevated levels of wild-type prelamin A with that of wild-type fibroblasts. We subsequently used the reversion
towards normal of two phenotypes, reduced cell growth and dismorphic nuclei, by treatment with farnesyltransferase
inhibitor (FTI) or overexpression of ZMPSTE24, as a filtering strategy to identify genes linked to the onset of these two
phenotypes. Through this analysis we identified the gene encoding for the transcription factor FOXQ1, as a gene whose
expression is induced in both cells expressing progerin and elevated levels of wild-type prelamin A, and subsequently reduced
in both cell types upon conditions that ameliorate the phenotypes. We overexpressed FOXQ1 in normal fibroblasts and
demonstrated that increased levels of this factor lead to the development of both features that were used in the filtering
strategy. These findings suggest a potential link between this transcription factor and cell dysfunction induced by altered
prelamin A metabolism.

INTRODUCTION

Lamin A is a component of the nuclear lamina that is
synthesized as a prelamin A precursor that then
undergoes  several  sequential  post-translational
modifications to generate mature lamin A. Mutations in
the lamin A/C gene are associated with a variety of
disorders, collectively termed laminopathies [1], among
which is the progeroid disease Hutchinson-Gilford
Progeria Syndrome (HGPS) [2]. HGPS (progeria) and
Werner syndrome, also known as adult progeria, are
genetic diseases that may provide insights on the
mechanisms of normal human aging [3, 4]. The
majority of cases of HGPS are caused by a point muta-

tion in the lamin A/C gene that lead to the production of
a permanently farnesylated mutant lamin A protein
termed progerin [5, 6]. The production of progerin leads
to the progressive appearance of several cellular
alterations that cause the onset of an accelerated aging
phenotype. Progeria cells and Hela cells expressing
ectopic progerin display growth defects and altered
nuclear membrane morphology. Both cellular
phenotypes can be improved by inhibition of
farnesylation by treatment with farnesyl transferase
inhibitors (FTIs) [7-11]. More recently, several studies
have demonstrated that treatment with rapamycin, an
inhibitor of the growth-promoting mTOR signaling
pathway and potential drug for anti-aging therapy [12],
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limits the accumulation of progerin, improves the cellular
phenotype of progerin-expressing cells and rescue tissue
functions in lamins deficient mice [13-16]. These
findings suggest that mammalian target of rapamycin
(mTOR) inhibitors could be of therapeutic value for
progeria and possibly other laminopathies [17].

We and others have shown that small increases in the
expression of wild-type prelamin A are sufficient to
recapitulate the cellular defects observed in HGPS cells
including dismophic nuclei and reduced cell
proliferation resulting from increased incidence of
apoptosis and premature senescence [11, 18]. Cells
expressing progerin or elevated levels of wild-type
prelamin A show abnormal lamin A aggregates in the
nucleus, which are also observed in cells from normal
old-age individuals but absent in cells from young-age
individuals [11]. Although the relationship between
HGPS and the onset of similar phenotypes during the
lifespan of a normal individual is not know, these
findings suggest an intriguing link between
dysfunctional prelamin A processing and normal aging
[19]. Indeed, other studies have suggested that
alterations in the lamin A pathway may play a key role
in general human aging [20-22].

Lamin A is believed to provide a mechanical framework
for the support of the nuclear envelope [23, 24] and
influence the spatial organization of chromosomes and
chromatin structure, ultimately affecting gene expression
[1, 23,25, 26]. Accumulation of progerin has been shown
to cause a decrease in the levels of heterochromatin and
abnormal telomeres length homeostasis [18, 20, 27-29],
and alters genes expression [30-33]. However, a direct
relationship between altered gene expression and the
phenotypic changes of cells expressing dysfunctional
prelamin A has not been established.

RESULTS

Identification of changes in gene expression in cells
expressing progerin or elevated levels of prelamin A.

We have previously demonstrated that treatment with
FTI or increased expression of ZMPSTE24, a key
prelamin A processing enzyme, improve cell
proliferation and lead to a significant decrease in the
number of cells with dismophic nuclei in cells
expressing elevated levels of prelamin A [11],
indicating that abnormal prelamin A processing is
responsible for these phenotypic changes. Since
expression of progerin or increased expression of
prelamin A leads to remarkably similar cellular
phenotypes, we reasoned that the cellular alterations
observed in these cells are likely caused by shared

molecular effectors that play a significant role in
inducing the progeroid phenotype. To  test
experimentally this hypothesis, we carried out
microarray analyses of gene expression profiling in
isogenic normal human diploid fibroblast lines to
identify genes whose expression pattern is altered upon
expression of either progerin or elevated levels of wild-
type prelamin A (Figure 1, Step A). This analysis
demonstrates changes in the expression (>2 fold;
p<0.05) of more than 1800 genes in cells with progerin
or elevated levels of prelamin A (Figure S1A). To
define how these changes in gene expression may
influence cell homeostasis, we analyzed our microarray
data with Database for Annotation, Visualization, and
Integrated Discovery (DAVID) software, and identified
enrichment in genes linked to many biological pathways
(Figures S1B). Significantly, several of the pathways,
including the extracellular matrix (ECM)-receptor
interaction and WNT signaling, which have previously
been implicated in the pathology of progeria [33], were
shared between cells expressing progerin or elevated
levels of prelamin A (Figure S1C).

Identification of genes that are reverted by
treatment with farnesyl transferase inhibitor (FTI)
and ZMPSTE24 overexpression.

A filtering strategy was then used to identify potential
key effectors of lamin A dysfunction (Figure 1A, step B).
Specifically, we searched for genes whose expression
reverted towards normal after treatment of both cell lines
with farnesyl transferase inhibitors (FTIs) as well as, in
cells with elevated levels of wild-type prelamin A, after
ZMPSTE24 overexpression (Figures S2 and S3).
Through this analysis we identified one gene, which
encodes for the forkhead transcription factor FOXQI1, as
the only gene whose expression was induced in cells
expressing progerin and cells with elevated levels of
wild-type prelamin A, and subsequently reduced toward
normal in both cell types upon treatments that
ameliorates the defects in growth and nuclear membrane
morphology. The differential expression of FOXQ1 was
validated by  quantitative  reverse-transcriptase
polymerase chain reaction (RT-qPCR) analysis (Figure
1B). FOXQ1 is a poorly characterized member of the
forkhead family of transcription factors that has been
implicated in the regulation of epithelial cell morphology
and differentiation [34, 35].

Ectopic expression of FOXQ1 in human diploid
fibroblasts impairs proliferation and results in
dysmorphic nuclei.

To define the functional link between FOXQ1 and the
development of progeroid features induced by
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dysfunctional prelamin A processing, we overexpressed
FOXQ1 in normal human diploid fibroblasts and
monitored both growth and nuclear morphology of cells
in culture over several passages (Figure 2). Strikingly, we
noted that increased expression of FOXQ1 is
accompanied by reduced rates of proliferation and by a
significant number of cells with dysmorphic nuclei after a
few passages compared to control cells (Figure 2B-D).
Importantly, these changes are qualitatively and quan-

titatively similar to those observed in progeria cells, cells
ectopically expressing progerin and cells with elevated
levels of prelamin A (Figure 2) [11]. Growth inhibition is
restricted to primary cells, since expression of FOXQ1 as
well as progerin does not affect growth of transformed
cells including HelLa and HEK293 (data not shown). The
presence of nuclear blebbing in cells over-expressing
FOXQI1 is remarkable, as this is a prominent feature of
cells with altered lamin A function [19].
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Figure 1. A filtering strategy to identify effectors of lamin A dysfunction. (A) Strategy utilized
to identify FOXQ1 as a gene whose expression is altered in cells expressing progerin or elevated levels
of prelamin A and reversed towards normal after treatment with FTIs or ZMPSTE24 overexpression.
(B) Quantitative RT-PCR analysis of FOXQ1 expression in the indicated fibroblast lines confirms that
FOXQ1 expression is upregulated in cells expressing elevated levels of prelamin A or progerin, and
reverted towards normal after treatment with FTI or overexpression of ZMPSTE24.
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Figure 2. Ectopic expression of FOXQ1 in normal human diploid fibroblasts results in reduced growth
rates and altered nuclear membrane morphology, two phenotypes that are observed in cells expressing
progerin or elevated levels of prelamin A. (A) Human diploid fibroblasts expressing flag-tagged FOXQ1,
progerin or prelamin A were lysed and analyzed by immunoblotting with flag antibodies. Antibodies against
glyceraldehyde 3-phosphate dehydrogenase (GAPDH) were used as loading control. (B) Normal human
diploid fibroblasts were transduced with lentiviruses for the expression of flag-tagged FOXQ1, progerin or
prelamin A and cell growth was monitored over several passages. Control cell line represents human diploid
fibroblasts transduced with a lentivirus for the expression of GFP. (C) Percentage of cells with dysmorphic
nuclei at passage 3 and 4 in each experimental sample was determined as described in the materials and
methods section. (D) Representative images DAPI stained nuclei in control cells and cells overexpressing
progerin or FOXQ1 showing altered nuclear morphology. Arrows point to examples of nuclear blebbing.
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DISCUSSION

The poor proliferation of fibroblasts expressing progerin
is the result of both premature senescence and apoptosis
[11], two key features of cells expressing progerin or
elevated levels of prelamin A that are likely to
contribute to the premature aging phenotype of HGPS.
How accumulation of progerin or partially processed
prelamin A results in the premature onset of cell
dysfunction is unknown but likely linked to alterations
in fundamental nuclear processes.

Here, we implemented a stringent screen to identify
genes whose altered expression could contribute to the
onset of the defective phenotypes induced by
dysfunctional prelamin A processing. To this end, we
compared the transcriptome of isogenic fibroblasts
expressing either the mutant form of lamin A associated
with progeria (termed progerin) or elevated levels of
wild-type prelamin A, with that of wild-type fibroblasts.
We subsequently used the reversion of two phenotypes,
cell proliferation and nuclear membrane morphology,
towards normal by treatment with farnesyltransferase
inhibitors (FTI) and ZMPSTE24 overexpression as a
filtering strategy to identify key downstream effectors.
This analysis identified FOXQI, a subtelomeric gene
that encodes for a forkhead transcription factor, as the
only statistically significant gene whose expression is
induced in both cells expressing progerin and cells with
elevated levels of wild-type prelamin A, subsequently
reduced in both cell types upon treatment with FTI as
well as in cells expressing elevated levels of lamin A
after ZMPSTE24 overexpression. Strikingly, ectopic
expression of FOXQI1 in normal human fibroblasts
leads to the development of both features that were used
in the filtering strategy (growth defects and alterations
in nuclear membrane morphology) in a qualitative and
quantitative manner similar to that observed in cells
with dysfunctional prelamin A processing. However, we
did not observe a significant improvement in growth nor
nuclear membrane morphology in progerin-expressing
cells after downregulation of FOXQ1 by siRNAs (data
not shown), suggesting that altered expression of
additional genes contributes to the maintenance of these
phenotypes.

Although there is no prior link between FOXQ1 and
aging-associated pathologies, there have been studies
suggesting that FOXOs, a subfamily of the forkhead
transcription factors, play a protective role against age-
associated diseases including diabetes, cancer,
autoimmune syndromes and neurodegeneration [36].
FOXOs inhibit mTOR [37, 38], a potential substrate for
targeted therapy [17]; thus manipulation of FOXOs
function could provide clinical benefit for HGPS.

Whether FOXQ1 impacts mTOR function remains to be
determined.

Lamin A interacts with chromosomes and accumulation
of progerin has been shown to cause a decrease in the
level of peripheral heterochromatin, loss of
heterochromatin associated with the inactive X
chromosome [27, 28], relocalization or decrease levels
of markers of heterochromatin including hetero-
chromatin protein la (HP1a), histone H3 trimethylated
on lysine 9 (H3K9-3me) and histone H3 trimethylated
on lysine 27 (H3K27-3me) [20, 28, 39, 40]. These
findings suggest that epigenetic alterations caused by
progerin may induce changes in the expression of
specific genes, which contribute to the onset of the
defective phenotypes. These epigenetic changes could
be limited to a gene promoter or, since lamins have
been implicated in the positioning of chromosomal
domains within the nucleus [41], comprise large
chromosomal regions as a consequence of altered
spatial  distribution of chromosomes. Indeed,
comparative genomic hybridization studies have shown
that disruption of lamins function differentially
influence the relocalization of chromosomes to nuclear
“blebbed” sites [42]. Interestingly, the gene encoding
for FOXQI is located on the subtelomeric domain of
chromosome arm 6p, a chromosome arm that was
consistently overrepresented in nuclear membrane blebs
induced by lamin deficiency [42].

Changes in gene expression between cells from HGPS
patients and normal controls have been reported [30-
32]. However, very little overlap in the identity of
differentially expressed genes have been observed,
possibly suggesting that genetic heterogeneity in the
cell lines used for these studies influenced the outcome
of the analyses. Alternatively, progerin may induce
stochastic epigenetic alterations that affect distinct gene
sets, each of which contributes in distinct ways to the
onset of the progeroid phenotypes.

METHODS

Cell culture. Primary dermal fibroblast cell lines from
healthy newborn (GM00038 and AG12945), individuals
were obtained from the Coriell Cell Repository. HeLa
and HEK293 cells were obtained from ATCC (CRL-
1573). Cells were grown in Dulbecco’s modified
Eagle’s medium (DMEM) supplemented with 15% fetal
bovine serum, 2 mM L-glutamine, 100 U mL'
penicillin and 100 pg mL-1 streptomycin at 37 °C in
5% CO2, and 3% O2. Cells seeded at 1.4 x 105 per 100-
mm-diameter dish were passaged when cultures reached
85% confluency. Cell growth was measured by
calculation of accumulated population doublings using
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the formula (log H — log S)/ log 2, where log H is the
logarithm of the number of cells harvested and log S is
the logarithm of the number of cells seeded on the first
day of each passage, as described in [11]. Treatment of
fibroblast lines with FTI and ZMPSTE24
overexpression were carried out as described in [11].

RNA isolation. Total RNA was isolated from each
fibroblast line at passage 10 using RNeasy kit from
QIAGEN according to the manufacture’s protocol and
quantitated by assessing absorbance at 260 and 280 nm
using a NanoDropTM 1000 spectrophotometer. Three
micrograms of total RNA was then submitted to the
University of Southern California  Affymetrix
MicroArray Core Facility at Children's Hospital Los
Angeles for processing, chip hybridization, and
scanning. Gene expression was analyzed on an
Affimetrix gene chip Human Genome U133 Plus 2.0
Array, which offers comprehensive genome wide
expression on a single array with over 47,000
transcripts and variants, including 38,500 well
characterized genes. A Fluidics Station 400
(Affymetrix) was used to wash and stain the chips and
fluorescence was detected using a G2500 GeneArray
Scanner (Hewlett-Packard).

Microarray Data analysis. Raw data were analyzed
initially using Microarray Suite version 5.0 (MAS 5.0,
Affymetrix), which was used for quality control
analysis, to scale all values to a target value (250), and
to generate a list of ‘absent’ genes. Arrays were judged
as acceptable for additional analysis if the 3°/5” ratio of
GAPDH and B-actin was less than 3, and the percentage
of genes found to be ‘present’ was similar from array to
array. Low-level analysis (background correction,
normalization, and gene summarization) of microarray
data was performed with Microarray Suite 5.0 (MAS
5.0). Individual arrays were analyzed and scaled with
MAS 5.0 using manufacturer’s default thresholds for
detection calls to attain intensity signals, detection p-
value, and signal log ratio. Detection of significantly
differentially expressed genes between Affymetrix
GeneChips was attained using the Significance-Score
(S-score) algorithm (Bioconductor;
http://biocondctor.org). S-scores p-values of 0.01 were
used as the threshold. P-values higher than 0.01
between the Affymetrix GeneChips were filtered out
and were not included for the subsequent analysis. Gene
lists were attained using Microsoft Excel to filter for
differences between arrays with significant p-values
according to fold changes and to uncover genes that
were significantly reverted. Microarray experiments
conform to the MIAME guidelines and a complete data
set has been submitted to the National Center for
Biotechnology Information (NCBI) Gene Expression

Omnibus database (GEO).

Heat Maps. Gene Cluster 3.0 software, developed by
Michael Eisen at Stanford University (http//bonsai.ims.u-
tokyo.ac.jp/%7Emdehoon/software/cluster/software.htm)
was used to cluster the gene list attained from filtering
according to gene expression similarity and function.
The output of Cluster 3.0 was then imported in Java
Tree View [43] to generate heatmap images.

Pathways analysis. Database for Annotation,
Visualization and Integrated Discovery (DAVID)
software (http://david.abcc.nciferf.gov) was utilized to
compare co-expression interactions with interaction
information that was manually curated from the
literature and to annotate these interactions with the
closest matching biological functions. This software
package utilizes information derived from the literature
to identify functional relationships between genes and
various biological processes and molecular functions.

Quantitative  RT-PCR. Quantitative  reverse
transcription PCR (qPCR) was performed using the
BIORAD iCycler instrument. RNA from each cell line
was extracted and purified using the RNeasy kit
(Qiagen, Valencia, CA, USA) according to the
manufacturer’s instructions. For each sample, 3 pg of
RNA were transcribed using the first strand cDNA
synthesis kit from Amersham Biosciences for 1 h at 37
°C, after 10 min denaturation at 65 °C. Primers for
specific detection of FOXQ1 were: (FOXQ1-428F: 5°-
CGGAGATCAACGAGTACCTCA -3’; FOXQI1-591R:
5’-GTTGAGCATCCAGTAGTTGTCCTT-3"). The
glyceroldehyde 3-phosphate dehydrogenase gene
(GAPDH) was used as the internal standard. Primers for
(GAPDH) were used for normalization (GAPDH-F: 5°-
CCACCCATGGCAAATTCCATG-3’; GAPDH-R:5’-
TGATGGGATTTCCATTGATGAC-3’). PCR products
were separated on 2% agarose gels and stained with
Ethidium Bromide. iQ SYBR Green was used for real-
time PCR along with the MyiQ software according to
the manufacture’s instructions. All PCR efficiencies
were > 95% and were determined for each primer set
using a standard curve.

Plasmids and generation of stably transduced cell lines.
Human FOXQ1 cDNA was purchased from ATCC
(10436949) and cloned into the pCR4-topo vector by
PCR using the following primers: 5’-CATATGAAGT

TGGAGGTGTTCGTC-3’, 5’-TCTAGATCAGGCTAC
GAGCGTCTC-3’. Sequence accuracy was verified by
DNA sequencing. The FOXQ1 ¢cDNA was subcloned
into the Ndel1-EcoR1 sites of the pVL1393-Flag vector
(Comai et al., 1994). Flag-tagged FOXQ1 cDNA was
then subcloned into the BamHI/Xbal sites of the
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lentiviral transfer vector pkey204 MSH2-IRES-GFP to
generate pkey-FlagFOXQI1. Progerin, prelamin A, and
FOXQ1 were also subcloned into the Ndel/EcoRI sites
of the CMV promoter containing lentiviral vector
pRRL.sin.CMV.flag.sv40.puromycin. Recombinant
lentiviruses were generated as previously described
[44]. For lentiviral infection, calcium phosphate
transfected 293T cell cultures were trypsinized, seeded
onto 100-mm plates, and incubated at 37°C for 24 h.
The supernatant containing viral particles was collected,
filtered and equal volumes of each viral supernatant
were added to normal human fibroblast cultures that
were ~ 40% confluent. After 6 h incubation at 37°C, the
supernatant was removed, the cells were washed twice
with phosphate buffered saline (PBS) and incubated in
DMEM containing 10% serum at 37°C. Transduced
cells expressing the GFP were selected by fluorescence-
activated cell sorting. The expression of flag-tagged
proteins was analyzed by immunoblotting with flag
antibodies (Sigma, St. Louis, MO, USA). Each
lentivirus was transduced in two independent fibroblast
cell lines and each cell line was grown in duplicate.

Nuclear morphology analysis. Nuclear morphology
was analyzed by fluorescence microscopgz of DAPI-
stained cells. At each passage, 2.3 x 10° cells were
seeded in chambered slides and analyzed. Cells were
washed in PBS and fixed using 4% paraformaldehyde
for 5 min at room temperature. Fixed cells were then
washed again in PBS and incubated in a
permeabilization solution (0.1% Triton X-100, 0.1%
sodium citrate) for 5 min on ice. Cells were then
washed with PBS and DAPI (1 pg mL™' in PBS) was
added for 1 minute in the dark. Subsequently the cells
were washed in a permeabilization solution followed by
PBS to remove the detergent. Each slide was then
treated with antifade reagent and allowed to dry in the
dark. Nuclear morphology was analyzed with a
fluorescence microscope at x200, x400, and x1000
magnification. Nuclei with blebs were considered as
those with one or more lobulations resulting in
misshaped nuclei. At each passage, two independent
observers scored 300 cells for each cell line.

Western blot analysis. Human fibroblasts were washed
twice in PBS, collected, and lysed in SDS Sample
Buffer at 95 °C for 5 min. Cell extracts were resolved
by SDS-PAGE and transferred to polyvinylidene
fluoride (PVDF) membranes. Blots were probed with
anti-FOXQ1 (goat  polyclonal; Santa  Cruz
Biotechnology, Santa Cruz, CA, USA, sc-47596), anti-
GAPDH (goat polyclonal; Santa Cruz Biotechnology,
Santa Cruz, CA, USA, sc-20357), and anti-Flag (mouse
monoclonal, Sigma, F-3165). Immunoreactive bands
were detected with the appropriate horseradish

peroxidase-conjugated secondary antibodies (Pierce,
Rockford, IL, USA) and visualized by enhanced
chemiluminescence (Amersham, Piscataway, NY,
USA).

Statistical analysis. We performed statistical analysis
of differences between the cell lines and GFP control
using the Student’s #-test. We used Microsoft Excel for
calculations of Student’s t-test and standard deviations.
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Figure S1. (A) Summary of microarray data
showing number of genes with altered
expression in cells expressing elevated levels of
prelamin A or progerin. (B) Pie charts showing
pathways altered in cells expressing elevated
levels of prelamin A or progerin, as compared to
control cells. Chart was generated from the DNA
microarray data analysis by Database for
Annotation, Visualization, and Integrated
Discovery (DAVID). (C) Pie chart showing
common pathways affected in both cells
expressing elevated levels of prelamin A or
progerin. Numbers in each sector represent
number of deregulated genes shared between

gg;‘&igna"ng progerin and elevated levels of prelamin A within
the pathway.
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Figure S2. Unsupervised hierarchical clustering of differentially expressed genes from DNA microarray data analysis
showing gene expression changes in cells expressing elevated levels of prelamin A prior to and after FTI treatment
for 48 hours or ZMPSTE24 overexpression compared to control cells. Genes that are up- or down-regulated by >2-
fold with p<0.05 were subjected to centered Pearson's correlation matrix. Each heat map represents intensity values
relative to the median intensity across all samples per probe after background subtraction and normalization.
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