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Abstract: Embryonic stem cells (ESCs) are derived from the inner cell mass of the blastocysts and are characterized by the
ability to renew themselves (self-renewal) and the capability to generate all the cells within the human body. In contrast,
inducible pluripotent stem cells (iPSCs) are generated by transfection of four transcription factors in somatic cells. Like
embryonic stem cells, they are able to self-renew and differentiate. Because of these features, both ESCs and iPSCs, are
under intense clinical investigation for cell-based therapy. In this review, we revisit stem cell biology and add a new layer
of complexity. In particular, we will highlight some of the complexities of the system, but also where there may be
therapeutic potential for modulation of intrinsic stem cells and where particular caution may be needed in terms of cell
transplantation therapies.

INTRODUCTION the last 6 years since Takhashi and Yamanaka broke the

dogma in developmental biology that mammalian
Since the first isolation of human Embryonic Stem Cells somatic cell differentiation is an irreversible process
(ESCs) [1] huge interest has developed in the scientific [17, 18]. By transfection in human somatic cells of four
and clinical communities and in the public in general transcription factors (Nanog, Sox2, c-Myc and Klf4)
because of their therapeutic potential. In particular, they were able to revert the differentiated cells to an
attention has focused on their potential use in cell-based embryonic-like state. Because these newly generated
therapy for diseases that are refractory to conventional cells show the morphology, pluripotency and capacity
treatments, such as neurodegenerative diseases and to form teratomas like ESC, they named these cells,
immunodeficiency, because of their ability to be induced pluripotent stem cells (iPSCs). Thus, this
programmed into new mature differentiated cells of all revolutionary step in the field has provided the clinical
lineages [2]. The list of pathologies that in theory can be and scientific communities a second tool for cell-based
treated using stem cells includes: Alzheimer’s disease therapy. Although our knowledge of the molecular
[3], Parkinson’s disease [4],[5], Huntington’s disease mechanisms that control the self-renewal and
[6], stroke [7], diabetes [8], cancer [9], age-related differentiation of stem cells has grown considerably
disorders [10-12] haematological disorders [13], during the past decade, we still need more basic
cardiovascular disease [14, 15] and bone and muscle research in order to understand the molecular
regeneration [16]. This interest has further increased in mechanisms that regulate proliferation, survival and
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differentiation of stem cells particularly after

transplantation and in the pathological environment.

In this review, we will describe the biology of ESCs and
iPSCs, emphasising the common features that they
share. We will also review the state of the art of stem
cells in clinic.

ESCs

The following definition of a stem cell is now widely
accepted: stem cells are characterized by their ability to
renew themselves through mitotic cell division (self-
renewal) and the ability to differentiate into diverse
range of specialized cell types. In general, stem cells
can be classified into two broad types of mammalian
cell: 1) embryonic stem cells (ESCs), that are derived
from the inner cell mass of the blastocyst, and 2) adult
stem cells. Adult stem cells can be found in several
tissues and can be further classified into different
subtypes. The two groups can be distinguished on the
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basis of their ability for self-renewal and differentiation.
In particular, the self-renewal potential of ESCs is
unlimited, and they can generate all the cell types in the
body. In contrast, adult stem cells have limited self-
renewal and pluripotency, and are important
physiologically in tissue repair and homeostasis in the
adult.

The genes and the signalling pathways that control the
self-renewal and the cell fate decisions is a molecular
signature called “stemness” [19]. The cooperation of
intrinsic  elements (i.e. transcription factors) and
extrinsic signals (i.e. leukemia inhibitor factor, bone
morphogenetic protein and fibroblast growth factor)
from their microenviroment [20-24] regulates the
behaviour of stem cells (self-renewal + pluripotency)
(Figure 1A). This shows that self-renewal and
pluripotency of stem cells is a complex process that
requires the coordination of multiple pathways involved

in proliferation and the maintenance of an
undifferentiated state [21, 22].
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Figure 1. A schematic representation of ESCs biology. (A) The stemness of ESCs is maintained by intrinsic (i.e. SOX2,
NANOG and OCT4) and by extrinsic pathways (i.e. LIF, BMP4 and FGF). MicroRNAs also play a role in the maintenance of
stem cells, and some are expressed during self-renewal (miR-269, miR-290-295 cluster, miR-371, miR-200c) while others are
up-regulated during differentiation (miR-21, miR-22, miR-29, miR-134, miR-296, miR-470) (see text for details). (B) Role of
p53 in the maintenance of genomic stability in ESCs. During DNA damage, p53 is activated (via Ser315 phosphorylation) and
binds the Nanog promoter to repress its expression. The outcome of p53 activation is to induce the differentiation of ESCs
into other cell types that they can go into a senescent state or induces apoptosis to preserve genome stability.
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Figure 2. Induced pluripotent stem cells (iPSCs). (A) iPSCs are generated by the transduction in somatic cells of
“pluripotency” factors. The resulting iPSCs have similar properties to ESCs. (B) p53 pathways regulate the efficiency of
reprogramming. Overexpression of the oncogenic c-myc during reprogramming induces the ARF/p53 pathway that drives
the cells to apoptosis or senescence and the miR-34 family negatively regulates the expression of Nanog and Sox2. In a miR-
34 null-context, the expression of Nanog and Sox2 is increased, resulting in a higher reprogramming efficiency.

Three transcription factors, Nanog, Oct4 and Sox2 form
the core of a regulatory circuit, which maintains stem
cells capacity for self-renewal and pluripotency. Indeed,
ESCs deficient in Nanog lose pluripotency and
differentiate inappropriately [23, 25]. The POU domain
transcription factor, Oct4, is also critical for the
pluripotency of ESCs. Oct4 is down regulated during
differentiation of ESCs in vitro and in vivo [26, 27].
Moreover, Oct4 can interact with Sox2 and bind to the
Nanog promoter to regulate the expression of Nanog.
The SRY-related HMG-box transcription factor Sox2 is
also required for the maintenance of pluripotency in
ESC in vivo and in vitro [28-30].

Thus, the Oct4, Sox2 and Nanog transcription factors
control the expression of genes, including further
transcription factors (such as STAT3, HESX1, FGF-2
and TCF) [31] and other signaling components
necessary to maintain the stem cell state. Moreover,

they also repress the expression of genes that, if
expressed, would promote differentiation (such as
NUEROGI1, PAX6, HOXB1, DLXS5) [32, 33]. This
triad also forms an autoregulatory circuit, in which, by
binding to their own promoters, as well as to the
promoters of Oct4, Sox2 and Nanog they collaborate to
sustain their expression.

Among the extrinsic factors, LIF (Leukemia Inhibitor
factor) blocks the differentiation of mouse ESCs
through the binding to its receptor and subsequent
activation of Jak/STATS3 signaling [34, 35]. Activation
of this pathway is essential for self-renewal of ESC and
is necessary to maintain the undifferentiated state of
ESCs[36]. Another extrinsic factor that is critical for the
maintenance of the pluripotency of ESCs is bone
morphogenetic protein 4 (BMP4) [37, 38]. BMP4 binds
the BMP receptor and activates SMAD proteins, which
in turn promote the expression of inhibitor of
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differentiation (Id) proteins. The Id proteins block
lineage commitment and permit self-renewal of ESCs
[39, 40], for example by blocking the ESC
differentiation induced by Fibroblast Growth Factor
(FGF) via MAPK signaling [41].

Recently, several observations indicate that the p53
family is involved in the regulation of stem cell biology
[42]. The first indication of a direct p53 involvement in
this process comes from the observation that p53
regulates Nanog expression [43], [44]. In particular, it
has been shown that after induction of DNA damage in
mouse embryonic stem cells (mESCs), p53 is
phosphorylated at Ser315 and binds to the promoter of
NANOG, suppressing its expression. Consequently, the
result of p53 activation in this system is to bring mESCs
into a more differentiated state where the cells can
efficiently undergo p53-dependent cell cycle arrest or
apoptosis, promoting the preservation of genomic
stability. This role of p53 is supported by the fact that
the loss of p53 in human ESCs leads to an increase of
genomic instability [45]. Moreover, p53 participates in
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the control of neural stem cells (NSC). Loss of p53
leads to an elevated proliferation rate as well as an
increase in the self-renewal of in vitro propagated p53-/-
neural stem cells [46], although the precise contribution
of p53 to NSC differentiation is somewhat contro-
versial [47].

Another p53 family member, p73 [48-52] is also
required for the maintenance of NSCs. Indeed, several
experimental findings demonstrate that p73, in
particular the TAp73 isoform, is a positive regulator of
embryonic and adult NSCs. p73 null mice show a
reduction in neurogenesis in the subgranular zone of the
dentate gyrus and in the subventricular zone, and
neurospheres derived from p73 null mice grow more
slowly and are smaller. The potential downstream
candidates responsible for this phenotype are genes
involved in the regulation of proliferation and/or self-
renewal pathways [24, 53], and loss of p73 leads to a
transcriptional deregulation of SOX-2, SOX-3, NANOG,
NOTCH-I, NOTCH-2, HES-5, JAG2, HEY-2 and
DELTEX.
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Figure 3. Human cell-based therapy. Bone marrow transplantation is widely employed in the clinic for several diseases
including cancer and haematological disorders. More recently, MSCs are stepping in. They could be used to treat
inflammatory conditions such as Multiple Sclerosis and Pulmonary Fibrosis. The employment of iPSCs in cell-based therapy
is a relative new tool. However, because their potential tumorigenicity in the clinical setting remains to be clarified, perhaps
iPSCs should stay on the bench meanwhile and be used in drug screening and human disease models.

www.impactaging.com

881

AGING, December 2012, Vol.4 No.12



With the discoveries of microRNAs (miRs), a new layer
of complexity has been added to stem cell biology [54,
55]. miRs (for instance miR-269, the miR-290-295
cluster, miR-371 and miR-200c), have been found to be
preferentially expressed in undifferentiated stem cells
and their expression levels decrease as the stem cells
differentiate [56]. In contrast, the expression of other
miRs (miR-21, miR-22 and miR-29) increases during
the differentiation of ESCs indicating a possible role for
them in stem cell differentiation [57, 58]. Moreover, loss
of the components of the miR processing machinery,
such as Dicer and Drosha-DGCRS8-Ddx5 affect both self-
renewal and differentiation of ESCs [59, 60]. The Nanog-
Oct4-Sox2 triad is also a target of miRs during the
differentiation of ESCs. In particular, miR-134, miR-296
and miR-470 are up regulated during the differentiation
of mouse embryonic stem cells induced by retinoic acid,
and target these three transcription factors. This leads to
transcriptional and morphological changes characteristic
of differentiating mouse ESCs. More recently, miR-124
and miR-34a have been shown to contribute to neuronal
differentiation of ESCs [61-63].

iPSCs

Nuclear transplantation, cellular fusion and cell
explantation are the strategies that scientists have
employed in order to induce the conversion of
differentiated cells into an embryonic state [17].
However, starting from the “simple” assumption that
the factors that play a key role in the maintenance of
pluripotency of ESC could work as reprograming
factors, Yamanaka and colleagues were able to
reprogram somatic cells into pluripotent ESCs [17].
They first identified genes that were highly and
specifically expressed in the ESC, but not in somatic
cells, and divided these into three groups. The first
group comprised genes responsible for the maintenance
of a pluripotent state (Nanog, Sox2 and Oct3/4). The
second group contained c-Myc, Stat-3 and TCl1, tumor-
associated genes. Finally, the third group contained
genes that have a specific role in ESCs such as Kfl-4,
ECATI and Esgl. Different combinations of genes in
the three groups were transfected into mouse embryonic
fibroblasts with the result that a combination of only
four factors (Oct4, Sox2, KIf4 and c-Myc), were
sufficient to reprogram somatic cells into iPSCs. While
Oct-4 and Sox-2 are required for reprogramming, a
combination of other factors, such as Oct4, Sox2,
Nanog and Lin28, is also able to reprogram somatic
cells into iPSCs [64]. However, Nanog is dispensable,
although two oncogenic factors (c-Myc and Klf4) are
essential for reprogramming. Phenotypically, the iPSC
are similar to ESC in many aspects, including
morphology, surface markers, gene expression, in-vitro

differentiation and teratoma formation when they are
injected in immunocompromised mice. However, the
precise molecular mechanism of reprogramming
remains unclear. While the role of Oct3/4 and Sox2
could be predicted by the fact that both have a role in
the control of pluripotency in ESCs, the exact role of c-
Myc and KIf4 remains to be clarified. We can speculate
that c-Myc and KIf4 act as modifiers of chromatin
structure allowing Oct3/4 and Sox2 to bind their target
genes that are normally silenced by epigenetic
mechanisms in differentiated cells.

While the ability to develop iPSCs from differentiated
somatic cells is exciting, the system has two major
drawbacks. Firstly, the reprogramming efficiency is
very low, suggesting that inside the cell there may be
mechanisms that prevent the reprogramming process:
secondly, there is the oncogenic potential of iPSCs, as
reflected in their ability to form teratomas in mice.
Several findings suggest that p53 is responsible for the
low efficiency in the reprogramming of somatic cells
[65]. Indeed, overexpression of the oncogene c-Myc
induces the ARF/p53 pathway driving the cells towards
apoptosis or senescence [66]. This is also supported by
the fact that the efficiency of reprogramming is higher
in a p53 null context [67-71]. Recently, some
observations indicate that the miR-34 family [72] may
also regulate reprogramming of somatic cells, and
deficiency of miR-34  significantly increases
reprogramming efficiency and kinetics [73]. In contrast
to p53 deficiency, which enhances reprogramming at
the expense of iPSC pluripotency, genetic ablation of
miR-34  promoted iPSC  generation  without
compromising self-renewal or pluripotency.
Suppression of reprogramming by miR-34a was due, at
least in part, to repression of pluripotency genes,
including Nanog, Sox2 and N-Myc. However, miR-34a
ablation only partially phenocopies that of p53[68] (and
combined deletion of miR-34a and p21 similarly fails to
reproduce the p53-/- phenotype), suggesting that p53

provides a barrier to iPSC generation through
mechanisms and targets not fully characterized.
Because inactivation of p53 and/or downstream

components of its pathway seem to be critical for
reprogramming efficiency, this raises concern about the
tumorigenicity of iPSCs, since chromosomal aberrations
have been found in iPSCs[74]. Moreover, injection of
iPSCs into blastocysts led to an incidence (about 20%)
of tumors in the resultant chimeric mice, attributable to
reactivation of the c-Myc transgene [75].

Stem Cells in Therapy: myth or reality

As mentioned above, cell-based therapy has generated a
lot of excitement in the scientific and clinical
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communities. In order to understand how far or close
we are from the reality, we scanned the public clinical
trials database of the National Institute of Health.
Typing  “stem cells” into http:/clinicaltrials.gov
database revealed that there are more than 4000 clinical
trials in progress at different stages (Recruiting, Phase
I/l and Terminated) for a wide range of diseases
(reviewed in [76]). Overall, the following picture
emerges. First, extensive experience, extending over
more than 30 years, on the transplantation of bone
marrow hematopoietic stem cells into patients affected
by blood pathologies and cancer provides reasonable
confidence on the safety and efficacy of cell-based
therapy.

A second message is the use of mesenchymal stem cells
(MSCs) as alternatives to the stem cell sources
described above. MSCs are adult stem cells that are
traditionally found in the bone marrow. However, they
can be also isolated from other tissues such as cord and
peripheral blood. MSCs can be differentiated to form
adipocytes, cartilage, bone, muscle and skin, and
therefore are under consideration for bone and cartilage
repair and autoimmune disease [77]. One advantage of
using MSCs in cell-based therapy is the fact that MSCs
are of low immunogenicity (due to lack of surface MHC
class II expression) and thus well tolerated during
transplantation. However, since it has been shown that
MSCs support tumor growth in allogenic animals, more
basic research is essential in order to better understand
the potential and especially the limits of MSCs [78-82].
The alternative to the use of MSCs, and one probably of
broader clinical applicability, is to use iPSCs [83]. Like
MSCs, these are autologous, and the problem of
immunological rejection and use of potent immuno-
suppressants implicit in ESC therapy does not arise.
However, although iPSCs largely resemble ESCs with
respect to gene expression profile, epigenetic signature
and differentiation capability, their use as therapy is
clouded by their potential tumorigenicity. In particular,
there is recent evidence reprogramming into iPSCs
induces genetic and epigenetic abnormalities [84-89],
including copy number variation, point mutations, DNA
methylation and alteration of chromosome numbers.
The clinical use of iPSCs must therefore proceed with
caution. Nevertheless, several studies have already
demonstrated that it is possible to generate iPSCs from
somatic cells of patients affected by diabetes[90],
neurodegenerative diseases [91-93] and psychiatric
disorders such as schizophrenia [94]. The generated
iPSCs recapitulate in vitro much of the cellular
pathology of the disease, and, quite apart from any
therapeutic potential, could be useful for more detailed
analysis of disease pathology [95, 96], drug screening
and associated toxicology.
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