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Abstract: P73 is a member of the p53 transcription factors family with a prominent role in neurobiology, affecting brain
development as well as controlling neuronal survival. Accordingly, p73 has been identified as key player in many age-
related neurodegenerative diseases, such as Alzheimer’s disease, neuroAIDS and Niemann-Pick type C disease. Here we
investigate possible correlations of p73 with Parkinson disease. Tyrosine hydroxylase is a crucial player in Parkinson
disease being the enzyme necessary for dopamine synthesis. In this work we show that levels of tyrosine hydroxylase can
be influenced by p73. We also demonstrate that p73 can protect against tyrosine hydroxylase depletion in an in vitro

model of Parkinson disease.

INTRODUCTION

P73 is a transcription factors member of the p53 family
[1, 2]. P73 gene contains two promoters that give rise to
two main variant: one that retains the transactivation
domain, TAp73 and a N-terminally truncated isoform,
ANp73 [3, 4]. Even if the both of them retain a
functional DNA-binding domain, they display opposing
functions, with TAp73 being the pro-apoptotic isoform
and ANp73 being the pro-survival one [5-9]. While p53
has been shown to play a prominent role in cancer and
p63 in development, p73 has intermediate functions,
including cancer [10-13], apoptosis [14-18],
development [19-22], aging [23-26] and neurobiology
[27-30]. In fact regarding this last trait, many works
identifying p73 as a key player in neurobiology have
been published, strongly supporting a role for this
transcription factors in this field [31, 32]; it has been
implied in Alzheimer’s disease due to its effects on tau
phosphorylation [25, 26, 33]. Furthermore, TAp73 is
necessary for maintenance of neuronal precursors [34,

35], as well as in antagonizing proliferation when not
necessary [36, 37]. Even the phonotypes of the animal
models highlight the neuronal involvement of p73 [1].
More in details, the full p73 KO shows profound defects
in brain development, displaying hippocampal
dysgenesis and hydrocephalus [38], while TAp73-/-
shows abnormal hippocampal anatomy [39] and DNp73
-/- is affected by severe reduction in neuronal density
and present atrophic choroid plexuses [40, 41]. Recently
it has also been published that TAp73 -/- mice show
signs of impaired aging due to defects in mitochondrial
respiration [42]; this was a striking discovery, since this
feature has already been described for p53 but never
before for p73 [43]. P73 has been involved in neuronal
survival [44-48] as well as neuronal degenerative
pathways such as the ones occurring in HIV-associated
dementia [49] a syndrome that usually manifests at late
stages of AIDS as a consequence of damaged central
nervous system, but also more rarely of peripheral
nerves [50-54]. P73 has been identified as a player in
Niemann-Pick type C disease, a disorder that leads to
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accumulation of lipids both in the liver and central
nervous system [55-58]. Furthermore p73 has also been
implied in the most common form of dementia that is
Alzheimer’s disease [59-64]. TAp73a can induce tau
phosphorylation, possibly implying a role of this
particular variant in Alzheimer’s disease [25, 33, 36, 65,
66]; this assumption is also supported by the fact that old
p73+/- heterozygous mice display signs of Alzheimer’s
disease, such as reduced motor and cognitive function,
accumulation of tau phosphorylation, tau kinase
dysregulation and CNS atrophy [26].

Parkinson disease is a progressive degenerative disorder
that presents loss of dopaminergic neurons in the
substantia nigra [67-73] as well as failure in autophagic
degradation of dysfunctional mitochondria [74-79] and
misfolding of alpha-synuclein  [80-82]. Many
progresses, also thanks to the functional models
developed, has been made for contrasting this
pathology, however 1-DOPA based treatment on long
terms causes many sides effects as well as
desensitization to drug response [67-70, 83, 84]. Many
attempts have been made in order to find possible
alternative treatments, such as use for example use of
urocortin that was able to revert lesion-induced deficit
in a rat PD model [85, 86]; another example is genipin
that was able to protect N2a cells upon 6-OHDA
induced cytotoxicity [87].

Here we investigate a possible involvement of p73 in
this disease. Taking into account the prominent role that
this transcription factor covers in brain development
and degeneration, we investigated whether possible
connections between p73 function and PD exists,
focusing on influences on tyrosine hydroxylase levels,
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since this enzyme is necessary for dopamine synthesis
[88-90].

RESULTS

Tyrosine hydroxylase promoter contains putative
responsive elements for p73

We investigated the possibility that tyrosine
hydroxylase (Th) could be a direct p73 transcriptional
target. To this end we analyzed its promoter, screening
for possible p73 responsive elements by using TFBIND
(Transcription Factor Binding site) [91], TRED
(Transcriptional Regulatory Element Database) [92, 93]
and Matlnspector (Genomatix) [94] and checked for
congruency between the two prediction systems. In
Figure 1, a schematic result of possible responsive
elements identified by the programs is depicted.

Tyrosine hydroxylase expression correlates with p73
levels

Next, we wanted to check whether p73 could influence
levels of Th. We used as initial system, primary
cerebellar granule cells (CGN) that have been already
used in in vitro models of Parkinson Disease (PD) [95,
96]. We transiently transfected these cells with a
plasmid encoding for human TAp73f or siRNA for p73.
We observed, by real-time PCR, that upon
overexpression of TAp73p, levels of Th were increased
of about 10 times. Moreover, knock down of p73 was
leading to a reduction of around 50% in tyrosine
hydroxylase levels (Figure 2A). We also confirmed
transfection efficiency, even in this case by real-time
PCR (Figure 2B).

-264

-190
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Figure 1. Th promoter encodes for putative p73 responsive elements. Schematic
representation of the p73 responsive elements in the promoter region of mouse tyrosine
hydroxylase. Sequences with confidence of prediction 290% and indentified by all the predictive
programs are reported, along with their sequence and position upstream than ATG start site.

www.impactaging.com

924

AGING, December 2012, Vol.4 No.12



>

22 4

18 A
16 -
14 A
12

Fold of difference

untreated

———
siRNA p73

1

—_
SN OV O
L

T T

TAp73beta

w

Fold of difference
S = N W A BN

| m.

untreated

.

siRNA p73

TAp73beta

Figure 2. Tyrosine hydroxylase levels correlates with p73.
CGN primary cells were transiently transfected (as indicated)
and 48 hours later, collected and processed. Real-time PCR
result of Th levels (A) and of p73 levels (B) are depicted.
Experiment has been reproduced at least 3 times (data are
represented as mean +/- SD).

Tyrosine hydroxylase levels correlates with p73
transactivation potential

The p73a isoform is the only C-terminal variant that
encodes for a fully functional Sterile Alfa Motif (SAM)
[97-99], that has been identified as a repressor of
transcription and apoptosis [100-102]. By interfering
specifically with mouse p73 exon 13, it is possible to
preclude the synthesis of a functional SAM domain
[97]. We used a pool of 5 different shRNAs all specific
for a portion of exon 13 and transfected N2a cells. Also
N2a cells have been used already as an in vitro system
for PD [103-106]. By semi-quantitative PCR (25
cycles), we noticed that KD of exon 13 was leading to a
shift from o, that was the prominent isoform in
untreated cells, versus B, with comparable levels as
shown by densitometry analysis (Figure 3A). This shift,
from a less to a more transactivating variant, lead to an
increase on Th levels that were higher than the one
found upon overexpression of human TAp73p (Figure

B). TAp73 levels were monitored by qPCR as a read-
out of transfection efficiency (Figure 3C).
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Figure 3. Tyrosine hydroxylase levels correlates with p73
transactivation potential. N2a cells were transiently
transfected with human TAp73B or shRNAs specific for exon 13;
48 hours later, cells were collected and processed. Semi-
guantitative PCR showed that knock-down of exon 13 lead to a
shift from o to B (A). Real-time PCR shows an increase of about 5
times in Th levels (B). In order to test efficiency of transfection,
p73 levels were monitored (C). Experiment has been reproduced
at least 3 times (data are represented as mean +/- SD). KD =
knock-down, GAPDH = Glyceraldehyde 3-phosphate dehydro-
genase, untr. = untreated. Experiment has been reproduced at
least 3 times.

P73 counteracts depletion of Th by 6-OHDA

N2a cells were transiently transfected with TAp73 or
siRNA for total p73; 48 hours later, cells were treated
with 10uM of 6-hydroxydopamine (6-OHDA) as an in
vitro model for Parkinson Disease [107, 108]. Cells
were collected at the indicated time points and levels of
Th were monitored by western blot analysis.
Overexpression of p73 was sufficient to avoid Th
downregulation upon incubation with 6-OHDA. On the
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other hand, knock down of p73 was accelerating this
process, as underlined also by densitometry analysis
(Figure 4).

+scramble  +TAp73beta +shp73

4h

o = F = o = LOuM
S © A 6-OHDA

= g <
S o AN O v A
-75KD
aTh|P...~--. &

oaGAPDH |” -37KDa

100 8254611001075 120100 61} 41% relative to Oh

Figure 4. p73 counteracts depletion of Th by 6-OHDA.

N2a cells were transiently transfected with human TAp73 or
shRNA against p73. After 48 hours, cells were treated with 10uM
(final concentration) of 6-OHDA and collected at the indicated
time points. Protein extracts were subjected to western blot
analysis and quantified with densitometry. 6-OHDA = 6-
hydroxydopamine, Th = tyrosine hydroxylase, GAPDH =
Glyceraldehyde 3-phosphate dehydrogenase. Experiment has
been reproduced at least 3 times.

DISCUSSION

We identified by screening the promoter region of
tyrosine hydroxylase a possible responsive element of
p73 (Figure 1). This has been confirmed in three distinct
predictive databases: two responsive elements, with a
confidence of prediction higher than 90%, suggests that
Th is a potential target of p73. In line with these
findings, in CGN primary cells there was an induction
of mouse Th of about 15 times, upon overexpression of
human TAp73p (Figure 2). This is an indication of how
strong p73 can induce tyrosine hydroxylase, since this
increase was resulting upon overexpression of a human
p73 variant, while the upregulation that we monitored
was the one of mouse endogenous Th. Further proof of
this was that silencing of mouse total p73 was causing a
decrease to a comparable extent in Th levels, strongly
supporting the hypothesis of tight co-regulation between
p73 and Th. Another importance aspect of p73 is that its
different isoforms have different transactivation
potential [101, 109, 110]. The TAp73a variant has a
lower transactivation potential than the § isoform [101,
102, 109] that lacks exon 13, leading to a loss of
functionality of the SAM domain [97, 99, 111]. Since
specific KD of exon 13 lead to a shift from a to f
(Figure 3A), we exploited this fact to monitor levels of
Th driven by the B isoform in a more physiological
context. Even if upon KD of exon 13, B levels were less

than half than the overexpression of the human variants,
we highlighted an increased of five versus four times in
N2a cells respectively. This result further indicates that
p73 might affect PD, since physiological levels of p73f
were potent inducer of Th. A similar outcome was
found in two different in vitro systems. The fold of
induction of Th in CGN was greater than N2a; this
could be related to the fact that CGN are dopaminergic
cells [112-114] while N2a are not [104, 115]. Another
intriguing result was the outcome of the in vitro PD
induction with 6-OHDA. Indeed, TAp73p has a
protective role in shielding cells against Th decrease,
that is one of the main steps for the development of
Parkinson Disease [116, 117]. We don’t know whether
ANp73 could play a role in this scenario, but it would
be really interesting to investigate also on this matter,
since also ANp73 has been reported to play an
important role in brain development and function, but
also in aging [47, 118, 119]. Furthermore, ANp73 plays
a critical role in maintenance of developmental as well
as adult neurons [118-120]. Following this line, it would
be important to study specific p73 isoforms role, also
focusing on the C-terminal variants of p73, that have
not been fully characterized yet.

In conclusion, here we reported the ability for p73 to
regulate tyrosine hydroxylase and by doing this,
protecting against events that can lead to Parkinson
disease.

MATERIALS AND METHODS

Cells cultures and substances. Cells were cultured at
37 °C in 5% CO, in culture medium. N2a were
purchased from ATCC (#CCL-131) and maintained in
a mix of 45% DMEM high glucose, 45% Optimem and
10% fetal bovine serum, 250 mM L-glutamine, 1U/ml
penicillin/streptomycin (all Gibco). Cerebellar Granule
Cells were derived from cerebellum of P7 C57Bl/6
mice and generated as already published [95]. Mice
were bred and subjected to listed procedures under the
project license released from the United Kingdom
Home Office. 6-OHDA was purchased from Sigma-
Aldrich.

Transfection. Transfections were carried out by
Lipofectamine 2000 reagent (Invitrogen) according to
the manufacturer’s instructions. Cells were transfected
with human TAp73B (GeneScript) or siRNA for p73
(Accell siRNA Dharmacon), or five shRNAs pool
specific for exon 13 (Genecopoeia). After 48 hours,
cells were harvested for protein and RNA extraction.
Each experiment was performed at least in triplicate.

RNA Extraction and gqRT-PCR. RNA was extracted
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using TRIzol (Invitrogen) and following manufacturers
guidelines. After extraction, RNA was quantified with
NanoDrop 2000 (ThermoScientific) and 5pug were
treated with DNase I (Sigma) in order to eliminate DNA
contamination. cDNA was reversed transcribed using
RevertAid H Minus First Strand ¢cDNA synthesys kit
(Fermentas). qRT-PCR was performed in an ABI
PRISM 7000 Sequence Detection System (Applied
Biosystem) with SYBR green ready mix (Applied
Biosystem) and specific primers (please see primers
session). Actin or 18S gene was used as internal control.
Gene expression was defined from the threshold cycle
(Ct), and relative expression levels were calculated by
using the 224 method after normalization with
reference to expression of housekeeping gene
(GAPDH). Semi-quantitative PCR was performed using
GoTaq DNA Polymerase (Promega) and the following
cycle conditions: 5 min at 95°C; 30 s at 95°C, 1min at
58°C, 1 min at 72°C 30 cycles and 10 min at 72°C. PCR
product was run on a 10% acrylamide gel (BioRad) and
stained afterwards for 10 min in a 0.5ug/ml ethidium
bromide (Sigma-Aldrich) solution.

Western Blotting. Proteins were extracted with RIPA
buffer containing cocktail inhibitors (Roche) and
concentration was determined using a Bradford dye-
based assay (Biorad). Total protein (50 pg) was
subjected to SDS-PAGE followed by immunoblotting
with appropriate antibodies at the recommended
dilutions. The blots were then incubated with
peroxidase linked secondary antibodies followed by
enhanced-chemiluminescent detection using Super
Signal chemiluminescence kit (Thermo scientific).
Antibodies: rabbit polyclonal anti tyrosine hydroxilase
(1:1000; Calbiochem), mouse monoclonal anti GAPDH
(1:10000; Sigma-Aldrich). Densitometry analysis was
achieved by using ImageJ software.

Primers. Real-time PCR:

mTAp73 FWD 5’-GCACCTACTTTGACCTCCCC-3’
mTAp73 REV 5’-GCACTGCTGAGCAAATTGAAC-3’
mTh FWD 5’-CTTTGACCCAGACACAGCAG-3’
mTh FWD 5’-ACAAGCTCAGGAACTATGCC-3’
actin FWD 5’-GGCTGTATTCCCCTCCATCG-3’
actin REV 5’-CCAGTTGGTAACAATGCCATGT-3’
18S FWD 5’-AGTTCCAGCACATTTTGCGAG-3’
18S REV 5’-TCATCCTCCGTGAGTTCTCCA-3’
Semi-quantitative PCR:

mp73-X10 FWD: 5’-GAGATCTTGATGAAAGTCAA
GG-3’

mp73-X14 REV: 5’-GCATTTCCGTGTGCGCCAC-3’
GAPDH FWD 5’-CAAGGTCATCCATGACAACTTG
-3

GAPDH REV 5’-GTCCACCACCCTGTTGCTGTAG-3’
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